OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 19 — Jul. 1, 2002
  • pp: 4013–4023

Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging

Tomohiro Shirai  »View Author Affiliations

Applied Optics, Vol. 41, Issue 19, pp. 4013-4023 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel, to our knowledge, adaptive optical imaging system for high-resolution retinal imaging is described. The system is based on a feedback interferometer, in which two-dimensional output fringe intensity from a Mach–Zehnder interferometer with large radial shear is fed back, with the help of a video projector connected with a CCD camera, to an optically addressed phase-only liquid-crystal spatial light modulator. Experiments to verify the system performance have been conducted by use of an artificial eye consisting of a lens, an aberration plate, and a resolution test target. We observed that an image of the test target (mimicking a retina) blurred by the aberration plate (mimicking ocular aberrations) was successfully restored immediately after our adaptive optics system was activated.

© 2002 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(230.6120) Optical devices : Spatial light modulators

Original Manuscript: February 13, 2002
Published: July 1, 2002

Tomohiro Shirai, "Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging," Appl. Opt. 41, 4013-4023 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. W. Babcock, “Adaptive optics revisited,” Science 249, 253–257 (1990). [CrossRef] [PubMed]
  2. J. M. Geary, “Wavefront sensors,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 123–150.
  3. R. E. Aldrich, “Deformable mirror wavefront correctors,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 151–197.
  4. R. K. Tyson, “Introduction,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 1–27.
  5. A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989). [CrossRef] [PubMed]
  6. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  7. D. R. Williams, J. Liang, D. T. Miller, A. Roorda, “Wavefront sensing and compensation for the human eye,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 287–310.
  8. D. T. Miller, “Adaptive optics in retinal microscopy and vision,” in Handbook of Optics, Volume III, 2nd ed. M. Bass, ed. (McGraw-Hill, New York, 2001), Chap. 10.
  9. L. Zhu, P. Sun, D. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999). [CrossRef]
  10. E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001). [CrossRef]
  11. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef] [PubMed]
  12. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001). [CrossRef]
  13. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,”Opt. Express 8, 631–643 (2001), http: www.opticsexpress.org . [CrossRef] [PubMed]
  14. P. Artal, R. Navarro, “High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry,” Opt. Lett. 14, 1098–1100 (1989). [CrossRef] [PubMed]
  15. S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996). [CrossRef]
  16. R. Navarro, E. Moreno-Barriuso, S. Bará, T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000). [CrossRef]
  17. I. Iglesias, P. Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25, 1804–1806 (2000). [CrossRef]
  18. For example, G. D. Love, “Liquid crystal adaptive optics,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 273–285.
  19. T. Shirai, T. H. Barnes, T. G. Haskell, “Adaptive wave-front correction by means of all-optical feedback interferometry,” Opt. Lett. 25, 773–775 (2000). [CrossRef]
  20. T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001). [CrossRef]
  21. T. Shirai, T. H. Barnes, “Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device,” J. Opt. Soc. Am. A 19, 369–377 (2002). [CrossRef]
  22. L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997). [CrossRef] [PubMed]
  23. F. Vargas-Martín, P. M. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998). [CrossRef]
  24. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Sec. 4.4. [CrossRef]
  25. For example, T. H. Barnes, T. Eiju, K. Matsuda, “High resolution adaptive optics using an interference phase loop,” Opt. Commun. 132, 494–502 (1996). [CrossRef]
  26. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999). [CrossRef]
  27. F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977). [CrossRef] [PubMed]
  28. N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979). [CrossRef] [PubMed]
  29. G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986). [CrossRef] [PubMed]
  30. J.-M. Gorrand, “Reflection characteristics of the human fovea assessed by reflecto-modulometry,” Ophthalmic Physiol. Opt. 9, 53–60 (1989). [CrossRef] [PubMed]
  31. P. Artal, R. Navarro, “Simultaneous measurement of two-point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992). [CrossRef] [PubMed]
  32. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996). [CrossRef] [PubMed]
  33. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  34. H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  35. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  36. For example, D. H. Sliney, M. L. Wolborsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1141 (1980). [CrossRef] [PubMed]
  37. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  38. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Sec. 7.1.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited