OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 19 — Jul. 1, 2002
  • pp: 4024–4035

Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model

Maya S. Nair, Nirmalya Ghosh, Narisetti Sundar Raju, and Asima Pradhan  »View Author Affiliations


Applied Optics, Vol. 41, Issue 19, pp. 4024-4035 (2002)
http://dx.doi.org/10.1364/AO.41.004024


View Full Text Article

Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the measurement of optical transport parameters of pathologically characterized malignant tissues, normal tissues, and different types of benign tumors of the human breast in the visible wavelength region. A spatially resolved steady-state diffuse fluorescence reflectance technique was used to estimate the values for the reduced-scattering coefficient (μ<sub><i>s</i></sub>′) and the absorption coefficient (μ<sub><i>a</i></sub>) of human breast tissues at three wavelengths (530, 550, and 590 nm). Different breast tissues could be well differentiated from one another, and different benign tumors could also be distinguished by their measured transport parameters. A diffusion theory model was developed to describe fluorescence light energy distribution, especially its spatial variation in a turbid and multiply scattering medium such as human tissue. The validity of the model was checked with a Monte Carlo simulation and also with different tissue phantoms prepared with polystyrene microspheres as scatterers, riboflavin as fluorophores, and methylene blue as absorbers.

© 2002 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(260.2510) Physical optics : Fluorescence
(290.1990) Scattering : Diffusion

Citation
Maya S. Nair, Nirmalya Ghosh, Narisetti Sundar Raju, and Asima Pradhan, "Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model," Appl. Opt. 41, 4024-4035 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-19-4024


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. R. Alfano, A. Pradhan, and G. C. Tang, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
  2. A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 3, 101–112 (1995).
  3. R. Richards-Kortum and E. Sevick Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
  4. C. H. Liu, B. B. Das, W. L. Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Calmer, A. Caron, and R. R. Alfano, “Raman, fluorescence and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media,” J. Photochem. Photobiol. 16, 187–209 (1992).
  5. M. Keijzer, R. Richards-Kortum, S. L. Jacques, and M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
  6. A. J. Durkin, S. Jaikumar, N. Ramanujam, and R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994).
  7. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
  8. A. J. Durkin and R. Richards-Kortum, “Comparison of methods to determine chromophore concentrations from fluorescence spectra of turbid samples,” Lasers Surg. Med. 19, 75–89 (1996).
  9. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebert, “Influence of the emission–reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
  10. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
  11. L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976).
  12. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
  13. B. C. Wilson, T. J. Farrell, and M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1990), pp. 219–231.
  14. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
  15. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. Van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1765 (1996).
  16. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
  17. M. S. Patterson and B. W. Pogue, “Mathematical model for time resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
  18. C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
  19. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
  20. R. H. Mayer, J. S. Reynolds, and E. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
  21. D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
  22. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1, pp. 175–178.
  23. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Light transport in tissue: accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation,” Lasers Surg. Med. 18, 129–138 (1996).
  24. A. J. Welch, C. M. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
  25. A. Pradhan, M. S. Nair, N. Ghosh, and A. Agarwal, “Spatial variation of fluorescence in human breast tissues,” in Optical Biopsy III, R. R. Alfano, ed., Proc. SPIE 3917, 194–199 (2000).
  26. C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  27. B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, and A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).
  28. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
  29. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
  30. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
  31. M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
  32. V. C. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
  33. W. Schmidt, “Fluorescence properties of isotropically embedded flavins,” Photochem. Photobiol. 34, 7–16 (1981).
  34. G. Bottiroli, A. C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, and P. Spinelli, “Natural fluorescence of normal and neoplasic human colon: a comprehensive ‘ex-vivo’ study,” Lasers Surg. Med. 16, 48–60 (1995)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited