OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 2 — Jan. 10, 2002
  • pp: 348–360

Three-Dimensional Optoelectronic Stacked Processor by use of Free-Space Optical Interconnection and Three-Dimensional VLSI Chip Stacks

Guoqiang Li, Dawei Huang, Emel Yuceturk, Philippe J. Marchand, Sadik C. Esener, Volkan H. Ozguz, and Yue Liu  »View Author Affiliations

Applied Optics, Vol. 41, Issue 2, pp. 348-360 (2002)

View Full Text Article

Acrobat PDF (3278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a demonstration system under the three-dimensional (3D) optoelectronic stacked processor consortium. The processor combines the advantages of optics in global, high-density, high-speed parallel interconnections with the density and computational power of 3D chip stacks. In particular, a compact and scalable optoelectronic switching system with a high bandwidth is designed. The system consists of three silicon chip stacks, each integrated with a single vertical-cavity-surface-emitting-laser–metal-semiconductor-metal detector array and an optical interconnection module. Any input signal at one end stack can be switched through the central crossbar stack to any output channel on the opposite end stack. The crossbar bandwidth is designed to be 256 Gb/s. For the free-space optical interconnection, a novel folded hybrid micro–macro optical system with a concave reflection mirror has been designed. The optics module can provide a high resolution, a large field of view, a high link efficiency, and low optical cross talk. It is also symmetric and modular. Off-the-shelf macro-optical components are used. The concave reflection mirror can significantly improve the image quality and tolerate a large misalignment of the optical components, and it can also compensate for the lateral shift of the chip stacks. Scaling of the macrolens can be used to adjust the interconnection length between the chip stacks or make the system more compact. The components are easy to align, and only passive alignment is required. Optics and electronics are separated until the final assembly step, and the optomechanic module can be removed and replaced. By use of 3D chip stacks, commercially available optical components, and simple passive packaging techniques, it is possible to achieve a high-performance optoelectronic switching system.

© 2002 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4960) Optics in computing : Parallel processing

Guoqiang Li, Dawei Huang, Emel Yuceturk, Philippe J. Marchand, Sadik C. Esener, Volkan H. Ozguz, and Yue Liu, "Three-Dimensional Optoelectronic Stacked Processor by use of Free-Space Optical Interconnection and Three-Dimensional VLSI Chip Stacks," Appl. Opt. 41, 348-360 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. W. Goodman, F. I. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
  2. H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
  3. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  4. G. I. Yayla, P. J. Marchand, and S. C. Esener, “Speed and energy analysis of digital interconnections: comparison of on-chip, off-chip, and free-space technologies,” Appl. Opt. 37, 205–227 (1998).
  5. A. L. Lentine, K. W. Goosen, J. A. Walker, L. M. F. Chirovsky, L. A. D’Asaro, S. P. Hui, B. J. Tseng, R. E. Leibenguth, J. E. Cunningham, W. Y. Jan, J.-M. Kuo, D. W. Dahringer, D. P. Kossives, D. D. Bacon, G. Livescu, R. L. Morrison, R. A. Novotny, and D. B. Buchholz, “High-speed optoelectronic VLSI switching chip with >4000 optical I/O based on flip-chip bonding of MQW modulators and detectors to silicon CMOS,” IEEE J. Sel. Top. Quantum Electron. 2, 77–84 (1996).
  6. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibenguth, S. P. Hui, G. J. Zydzik, K. W. Goosen, J. D. Wynn, B. J. Tseng, J. Lopata, J. A. Walker, J. E. Cunningham, and L. A. D’Asaro, “Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits,” IEEE Photon. Technol. Lett. 11, 128–130 (1999).
  7. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
  8. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
  9. F. B. McCormic, F. A. P. Tooley, T. J. Cloon, J. M. Sasian, and H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
  10. R. K. Kostuk, J. W. Goodman, and L. Hesselink, “Optical imaging applied to microelectronic chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985).
  11. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, and W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
  12. X. Zheng, P. J. Marchand, D. Huang, and S. Esener, “Free-space parallel multichip interconnection system,” Appl. Opt. 39, 3516–3524 (2000).
  13. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, and M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
  14. N. McArdle, M. Naruse, and M. Ishikawa, “Optoelectronic parallel computing using optically interconnected pipeline processing arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 250–260 (1999).
  15. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, and L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlens,” Appl. Opt. 37, 2811–2821 (1998).
  16. Y. Li, T. Wang, and R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
  17. C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, and S. Esener, “Parallel distributed free-space optoelectronic computer engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard and T. Galstian, eds., Proc. SPIE 4089, 1037–1045 (2000).
  18. G. Li, D. Huang, E. Yuceturk, M. M. Wang, C. Berger, S. C. Esener, Y. Liu, and V. H. Ozguz, “Free-space optical interconnection for three-dimensional stacked VLSI chips,” in Technical Digest of Optics in Computing (Optical Society of America, Washington, D.C., 2001), pp. 144–146.
  19. S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
  20. G. J. Simonis, L. Jiang, B. Koley, M. Dagenais, J. Mait, P. Newman, B. Lawler, W. Chang, P. Shen, M. Taysing-Lara, and M. Datta, “Research on VCSEL interconnect and OE processing research at Army Research Laboratory,” in Vertical-Cavity Surface-Emitting Lasers IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 172–186 (2000).
  21. Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, and W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
  22. Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable optical interconnection circuits using polymer fiber-image guides,” Proc. IEEE 88, 794–805 (2000).
  23. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, and M. K. Hibbs-Brenner, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
  24. F. Quercioli, B. Tiribilli, A. Mannoni, and S. Acciai, “Optomechanics with LEGO,” Appl. Opt. 37, 3408–3416 (1998).
  25. D. Miyazaki, S. Masuda, and K. Matsushita, “Self-alignment with optical microconnectors for free-space optical interconnections,” Appl. Opt. 37, 228–232 (1998).
  26. D. T. Neilson and E. Schenfeld, “Plastic modules for free-space optical interconnects,” Appl. Opt. 37, 2944–2952 (1998).
  27. K. H. Brenner, M. Kufner, S. Kunfer, J. Moisel, A. Müller, S. Sinzinger, M. Testorf, J. Göttert, and J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming and plastic molding,” Appl. Opt. 32, 6464–6469 (1993).
  28. S. Esener and P. Marchand, “3D optoelectronic stacked processors: design and analysis,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, and H. Thienpont, Proc. SPIE 3490, 541–545 (1998).
  29. P. J. Marchand, A. V. Krishnamoorthy, G. I. Yayla, S. C. Esener, and U. Efron, “Optically augmented 3-D computer: system technology and architecture,” J. Parallel Distrib. Comput. 41, 20–35 (1997).
  30. D. Huang, G. Li, E. Yuceturk, M. M. Wang, C. Berger, X. Zheng, P. J. Marchand, and S. C. Esener, “3D optical interconnect distributed crossbar switching architecture,” in Technical Digest of Optics in Computing (Optical Society of America, Washington, D.C., 2001), pp. 141–143.
  31. B. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Taghizadeh, and A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934–6944 (1996).
  32. A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J.-Louis Gutzwiller, and M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a Terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 236–247 (1999).
  33. A. O. Harris, “Multichannel acousto-optic crossbar switch,” Appl. Opt. 30, 4245–4256 (1991).
  34. E. Chiou and P. Yeh, “2 × 8 photorefractive reconfigurable interconnect with laser diodes,” Appl. Opt. 31, 5536–5541 (1992).
  35. B. Webb and A. Louri, “All-optical crossbar switch using wavelength division multiplexing and vertical-cavity surface-emitting lasers,” Appl. Opt. 38, 6176–6183 (1999).
  36. Optical Research Associates, 3280 East Foothill Boulevard, Suite 300, Pasadena, Calif. 91107.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited