OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 20 — Jul. 10, 2002
  • pp: 4057–4069

Retrieval of atmospheric-temperature and water-vapor profiles by use of combined satellite and ground-based infrared spectral-radiance measurements

Shu-Peng Ho, William L. Smith, and Hung-Lung Huang  »View Author Affiliations


Applied Optics, Vol. 41, Issue 20, pp. 4057-4069 (2002)
http://dx.doi.org/10.1364/AO.41.004057


View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nonlinear sounding retrieval algorithm is used to produce vertical-temperature and water-vapor profiles from coincident observations taken by the airborne High-resolution Interferometer Sounder (HIS) and the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the SUbsonic Contrails and Clouds Effects Special Study (SUCCESS). Also, clear sky Geostationary Operational Environmental Satellite (GOES) and AERI radiance measurements, achieved on a daily real-time basis at the Department of Energy’s Oklahoma CART (Cloud and Radiation Testbed) site, are used to demonstrate the current profiling capability by use of simultaneous geostationary satellite and ground-based remote sensing observations under clear-sky conditions. The discrepancy principle, a method to find the proper smoothing parameters from the minimum value between the normalized spectral residual norm and the a priori upper bound, is used to demonstrate the feasibility and effectiveness of on-line simultaneous tuning of the multiple weighting and smoothing parameters from the combined satellite/airborne and ground-based measurements for the temperature and water-vapor retrieval in this nonlinear-retrieval process. An objective method to determine the degrees of freedom (d.f.) of the observation signal is derived. The d.f. of the radiance signal for the combined GOES and AERI measurements is larger than that for either instrument alone; while the d.f. of the observation signal for the combined GOES and AERI measurements is larger than that for either instrument alone and of the combined GOES and AERI measurements. The use of simultaneous clear-sky AERI and GOES data now provides improved vertical temperature and moisture soundings on an hourly basis for use in the Atmospheric Radiation Measurement program [J. Appl. Meteorol. 37, 875 (1998)].

© 2002 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics

History
Original Manuscript: September 7, 2001
Revised Manuscript: March 29, 2002
Published: July 10, 2002

Citation
Shu-Peng Ho, William L. Smith, and Hung-Lung Huang, "Retrieval of atmospheric-temperature and water-vapor profiles by use of combined satellite and ground-based infrared spectral-radiance measurements," Appl. Opt. 41, 4057-4069 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-20-4057


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976). [CrossRef]
  2. S. Twomey, “On the numerical solution of the Fredholm integral equations of the first kind by inversion of the linear system procedured by quadrature,” J. Assoc. Comput. Mach. 10, 79–101 (1963). [CrossRef]
  3. J. D. Susskind, J. Rosenfield, D. Reuter, M. T. Chahine, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984). [CrossRef]
  4. W. L. Smith, H. M. Woolf, H. B. Howell, H. L. Huang, H. E. Revercomb, “The simultaneous retrieval of atmospheric temperature and water vapor profiles—applications to measurements with the High spectral resolution Interferometer Sounder (HIS),” in RSRM ’87: Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Fleming, J. S. Theon, eds. (Deepak Publishing, Hampton, Va., 1988), pp. 189–202.
  5. W. L. Smith, H. E. Revercomb, D. D. Laporte, L. A. Sromovsky, S. Silverman, H. M. Woolf, H. B. Howell, R. O. Knuteson, H. L. Huang, “GHIS—the GOES High-Resolution Interferometer Sounder,” J. Appl. Meteorol. 29, 1189–1204 (1991). [CrossRef]
  6. W. L. Smith, H. E. Revercomb, H. B. Howell, H. M. Woolf, R. O. Knuteson, R. G. Dedecker, M. J. Lynch, E. R. Westwater, R. G. Struch, K. P. Morton, B. Stankov, M. J. Falls, J. Jordan, M. Jacobsen, W. F. Daberdt, R. McBeth, G. Albright, C. Paneitz, G. Wright, P. T. May, M. T. Decker, “GAPEX: A ground-based atmospheric profiling experiment,” Bull. Am. Meteorol. Soc. 71, 86–98 (1990). [CrossRef]
  7. E. R. Westwater, W. B. Sweezy, L. M. McMillin, C. Dean, “Determination of atmospheric temperature profiles from a statistical combination of ground-based profiler and operational NOAA 6/7 satellite retrievals,” J. Appl. Meteorol. 23, 689–703 (1984). [CrossRef]
  8. W. L. Smith, W. F. Feltz, R. O. Knuteson, H. R. Revercomb, H. B. Howell, “The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements,” J. Atmos. Oceanic Tech. 16, 323–333 (1999). [CrossRef]
  9. E. R. Westwater, N. C. Grody, “Combined surface-based and satellite-based microwave temperature profile retrieval,” J. Appl. Meteorol. 19, 1438–1444 (1980). [CrossRef]
  10. E. R. Westwater, W. B. Sweezy, L. M. McMillin, C. Dean, “Determination of atmospheric temperature profiles from a statistical combination of ground-based profiler and operational NOAA 6/7 satellite retrievals,” J. Appl. Meteorol. 23, 689–703 (1984). [CrossRef]
  11. E. R. Westwater, Z. Wang, N. C. Grody, L. M. McMillin, “Remote sensing of temperature profiles from a combination of observations from the satellite-based microwave sounding unit and the ground-based profiler,” J. Atmos. Oceanic Tech. 2, 97–109 (1985). [CrossRef]
  12. E. R. Westwater, M. J. Fals, J. Schroeder, “Combined ground- and satellite-based radiometric remote sensing,” in RSRM ’87: Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Fleming, J. S. Theon, eds. (Deepak Publishing, Hampton, Va., 1988), pp. 203–208.
  13. M. D. King, “Sensitivity of constrained linear inversions to the selection of the Lagrange multiplier,” J. Atmos. Sci. 39, 1356–1369 (1982). [CrossRef]
  14. C. M. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval algorithm,” J. Appl. Meteorol. 27, 705–733 (1988). [CrossRef]
  15. L. Pan, J. C. Gille, D. P. Edwards, P. L. Bailey, C. D. Rodgers, “Retrieval of tropospheric carbon monoxide for the MOPITT Experiment,” J. Geophys. Res. 103, 32277–32290 (1998). [CrossRef]
  16. D. E. Flittner, B. M. Herman, K. J. Thome, J. M. Simpson, J. A. Reagan, “Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappius absorption band,” J. Atmos. Sci. 50, 1113–1121 (1993). [CrossRef]
  17. V. A. Morozov, “On the solution of functional equation by the method of regularization,” Sov. Math. Dokl. 7, 414–417 (1966).
  18. G. Wahba, “Smoothing noisy data by spline functions,” Numer. Math. 24, 383–393 (1975). [CrossRef]
  19. P. Craven, G. Wahba, “Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation,” Numer. Math. 31, 377–403 (1979). [CrossRef]
  20. J. Li, H.-L. Huang, “Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle,” Appl. Opt. 38, 916–923 (1999). [CrossRef]
  21. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Appl. Math. 2, 2164–2168 (1944).
  22. W. L. Smith, H. E. Revercomb, H. B. Howell, H. M. Woolf, “HIS—A satellite instrument to observe temperature and moisture profiles with high vertical resolution,” Presented at Fifth Conference on Atmospheric Radiation, Baltimore, MD, 31 Oct.–4 Nov. (1983).
  23. H. E. Revercomb, H. Buijs, H. B. Howell, R. O. Knuteson, D. D. Laporte, W. L. Smith, L. A. Sromovsky, H. W. Woolf, “Radiometric calibration of IR interferometers: experience from the High-resolution Interferometer Sounder (HIS) aircraft instrument,” in RSRM ’87: Advances in Remote Sensing Retrieval Methods, A. Deepak, H. E. Fleming, J. S. Theon, eds. (Deepak Publishing, Hampton, Va., 1988), pp. 89–101.
  24. H. H. Aumann, R. Pugnao, “The Atmospheric Sounder on EOS,” Opt. Eng. 32, 776–784 (1994). [CrossRef]
  25. W. L. Smith, A. M. Larar, H.-L. Huang, B. Huang, H. E. Revercomb, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” presented at SPIE’s second international ASIA-Pacific symposium on Remote Sensing of the Atmosphere, Environment, and Space, Sendai, Japan, 9–12 Oct. (2000).
  26. W. F. Feltz, W. L. Smith, R. O. Knuteson, H. R. Revercomb, H. B. Howell, H. H. Woolf, “Meteorological Applications of Temperature and Water Vapor Retrieval from the Ground-based Atmospheric Emitted Radiance Interferometer (AERI),” J. Appl. Meteorol. 37, 857–875 (1998). [CrossRef]
  27. W. L. Smith, H. E. Revercomb, H. L. Huang, R. O. Knuteson, “Vertical sounding capabilities with high spectral resolution atmospheric radiation measurements—a demonstration with the high resolution interferometer sounder (HIS),” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies. A. Chedin, M. T. Chahine, N. A. Scott, eds. (Springer-Verlag, Berlin Heidelberg, New York, 1995), pp. 123–127.
  28. F. O’Sullivan, G. Wahba, “Gross validated Baysian retrieval algorithm for nonlinear remote sensing,” J. Comput. Phys. 59, 441–455 (1985). [CrossRef]
  29. W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976). [CrossRef]
  30. J. Li, “Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity,” Adv. Atmos. Sci. 11, 421–426 (1995).
  31. G. Wahba, “Design criteria and eigensequence plots for satellite-computed tomography,” J. Atmo. Oceanic Tech. 2, 125–131 (1985). [CrossRef]
  32. J. E. Hoke, N. A. Phillips, G. J. DiMego, J. J. Tuccillo, J. G. Sela, “The regional analysis and forecast system of the national meteorological center,” Wea. Forecasting 4, 323–334 (1989). [CrossRef]
  33. T. J. Schmit, “Sounder bias correction on the east-west radiance gradient,” in Proc. SPIEGOES-8 and Beyond, E. R. Washwell, ed. 2812, 630–637 (1996).
  34. W. L. Smith, A. Larga, B. Hinton, H. B. Howell, H. E. Revercomb, D. H. DeSlover, C. A. Sisko, D. C. Tobin, D. Cousins, D. Mooney, M. Gazarik, S. Mango, “The NPOESS airborne sounder tested-Interferometer (NAST-I): The validation of results from a new and revolutionary airborne remote sensing tool,” in Proceedings, Tenth Conference on Atmosphere Radiation (1999), pp. 548–551.
  35. H. E. Revercomb, T. Walden, D. C. Tobin, J. Anderson, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. Dirkx, S. C. Ellington, R. K. Garcia, R. Herbselb, R. O. Knuteson, D. Laporte, D. McRae, M. Werner, “Recent results from two new aircraft-based Fourier-transform interferometers—The scanning high-resolution interferometer sounder and the NPOESS atmospheric sounder tested interferometer,” presented at the 8th International Workshop on Atmospheric Science from Space using Fourier Transform Spectrometry, Toulouse, France, 16–18 November (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited