OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 20 — Jul. 10, 2002
  • pp: 4108–4119

Pattern recognition with a digital holographic microscope working in partially coherent illumination

F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, J.-C. Legros, and P. Kischel  »View Author Affiliations

Applied Optics, Vol. 41, Issue 20, pp. 4108-4119 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1832 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the implementation of the automatic spatial-frequency-selection filter for recognition of patterns obtained with a digital holographic microscope working with a partially coherent source. The microscope provides the complex-optical-amplitude field that allows a refocusing plane-by-plane of the sample under investigation by numerical computation of the optical propagation. By inserting a correlation filter in the propagation equation, the correlation between the filter and the propagated optical field is obtained. In this way, the pattern is located in the direction of the optical axis. Owing to the very weak noise level generated by the partially coherent source, the correlation process is shift invariant. Therefore the samples can be located in the three dimensions. To have a robust recognition process, a generalized version of the automatic spatial-frequency-selection filters has been implemented. The method is experimentally demonstrated in a two-class problem for the recognition of protein crystals.

© 2002 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.0100) Image processing : Image processing
(100.6740) Image processing : Synthetic discrimination functions
(180.0180) Microscopy : Microscopy

Original Manuscript: November 9, 2001
Revised Manuscript: March 18, 2002
Published: July 10, 2002

F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, J.-C. Legros, and P. Kischel, "Pattern recognition with a digital holographic microscope working in partially coherent illumination," Appl. Opt. 41, 4108-4119 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars, W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  2. K. Creath, “Temporal Phase Measurement Methods,” in Interferogram Analysis: digital fringe pattern analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, Publishing Ltd., London, 1993), pp. 94–140.
  3. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  4. B. Skarman, K. Wozniac, J. Becker, “Simultaneous 3D-PIV and temperature measurement using a New CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996). [CrossRef]
  5. T. M. Kreis, W. P. O. Jüptner, “Principle of digital holography,” in Fringe ’97: Automatic Processing of Fringe Patterns, W. Jæptner, W. Osten, eds. (Wiley, New York, 1998), pp. 353–363.
  6. B. Nilsson, T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Appl. Opt. 37, 7954–7959 (1998). [CrossRef]
  7. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  8. D. O. Hogenboom, C. A. Dimarzio, T. J. Gaudette, A. J. Devaney, S. C. Lindberg, “Three-dimensional images generated by quadrature interferometry,” Opt. Lett. 23, 783–785 (1998). [CrossRef]
  9. M. Adams, T. M. Kreis, W. P. O. Jüptner, “Particle size and position measurement with digital holography,” in Optical Inspection and Micromeasurements II, C. Gurecki, ed., Proc. SPIE3098, 234–240 (1998). [CrossRef]
  10. E. Cuche, F. Belivacqua, C. Despeuringe, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  11. B. Javidi, E. Tajahuerce, “Encrypting three-dimensional information with digital holography,” Opt. Lett. 39, 6595–6601 (2000).
  12. F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999). [CrossRef]
  13. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  14. F. Dubois, L. Joannes, J.-C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  15. Y. Takaki, H. Ohzu, “Hybrid holographic microscopy: Visualization of three-dimensional object information by use of viewing angles,” Appl. Opt. 39, 5302–5308 (2000). [CrossRef]
  16. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  17. E. Tajahuerce, O. Matoba, B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt. 40, 3877–3886 (2001). [CrossRef]
  18. Y. Frauel, E. Tajahuerce, M.-A. Castro, B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887–3893 (2001). [CrossRef]
  19. A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981). [CrossRef]
  20. P. Chavel, “Optical noise and temporal coherence,” J. Opt. Soc. Am. 70, 935–943 (1980). [CrossRef]
  21. A. B. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964). [CrossRef]
  22. D. P. Casasent, “Unified synthetic discriminant function computational formulation,” Appl. Opt. 23, 1620–1627 (1984). [CrossRef] [PubMed]
  23. B. V. K. Vijaya Kumar, “Minimum variance synthetic discriminant functions,” J. Opt. Soc. Am. 3, 1579–1584 (1986). [CrossRef]
  24. A. Mahalanobis, B. V. K. V. Kumar, D. Casasent, “Minimum average correlation energy filters,” Appl. Opt. 26, 3633–3640 (1987). [CrossRef] [PubMed]
  25. A. Mahalanobis, D. Casasent, “Performance evaluation of minimum average correlation filters,” Appl. Opt. 30, 561–572 (1991). [CrossRef] [PubMed]
  26. Ph. Réfrégier, “Filter design for optical pattern: multicriteria optimization approach,” Opt. Lett. 15, 854–856 (1990). [CrossRef]
  27. Ph. Réfrégier, “Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency,” Opt. Lett. 16, 829–831 (1991). [CrossRef] [PubMed]
  28. D. L. Flannery, “Optimal trade-off distortion-tolerant constrained-modulation correlation filters,” J. Opt. Soc. Am. A 12, 66–72 (1995). [CrossRef]
  29. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef] [PubMed]
  30. A. Vander Lugt, F. B. Rotz, “The use of film nonlinearities in optical spatial filtering,” Appl. Opt. 1, 215–222 (1970). [CrossRef]
  31. Ph. Réfrégier, V. Laude, B. Javidi, “Nonlinear joint transform correlation: an optimal solution for adaptive image discrimination and input noise robustness,” Opt. Lett. 19, 405–407 (1994).
  32. B. Javidi, D. Painchaud, “Distortion-invariant pattern recognition with Fourier-plane nonlinear filters,” Appl. Opt. 35, 318–331 (1996). [CrossRef] [PubMed]
  33. M. Guillaume, Ph. Réfrégier, J. Campos, V. Lashin, “Detection theory approach to multichannel location,” Opt. Lett. 22, 1887–1889 (1997). [CrossRef]
  34. F. Guérault, Ph. Réfrégier, “Unified statistically independent region processor for deterministic and fluctuating targets in nonoverlapping background,” Opt. Lett. 23, 412–414 (1998). [CrossRef]
  35. B. Javidi, F. Parchekani, G. Zhang, “Minimum-mean-square-error filters for detecting a noisy target in background noise,” Appl. Opt. 35, 6964–6975 (1996). [CrossRef] [PubMed]
  36. F. Dubois, “Automatic spatial frequency selection algorithm for pattern recognition by correlation,” Appl. Opt. 32, 4365–4371 (1993). [CrossRef] [PubMed]
  37. F. Dubois, “Nonlinear cascaded correlation processes to improve the performances of the automatic spatial-frequency-selective filters in pattern recognition,” Appl. Opt. 35, 4589–4597 (1996). [CrossRef] [PubMed]
  38. C. Minetti, F. Dubois, “Reduction in correlation filter sensitivity to background clutter using the automatic spatial frequency selection algorithm,” Appl. Opt. 35, 1900–1903 (1996). [CrossRef] [PubMed]
  39. M. Nazarathy, J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am. 70, 150–159 (1980). [CrossRef]
  40. S. P. Almeida, J. Kim-Tzong Eu, “Water pollution monitoring using matched spatial filters,” Appl. Opt. 15, 510–515 (1976). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited