OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 20 — Jul. 10, 2002
  • pp: 4124–4132

Compression of digital holograms for three-dimensional object reconstruction and recognition

Thomas J. Naughton, Yann Frauel, Bahram Javidi, and Enrique Tajahuerce  »View Author Affiliations

Applied Optics, Vol. 41, Issue 20, pp. 4124-4132 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the results of applying lossless and lossy data compression to a three-dimensional object reconstruction and recognition technique based on phase-shift digital holography. We find that the best lossless (Lempel–Ziv, Lempel–Ziv–Welch, Huffman, Burrows–Wheeler) compression rates can be expected when the digital hologram is stored in an intermediate coding of separate data streams for real and imaginary components. The lossy techniques are based on subsampling, quantization, and discrete Fourier transformation. For various degrees of speckle reduction, we quantify the number of Fourier coefficients that can be removed from the hologram domain, and the lowest level of quantization achievable, without incurring significant loss in correlation performance or significant error in the reconstructed object domain.

© 2002 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.5010) Image processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing
(110.4280) Imaging systems : Noise in imaging systems

Original Manuscript: September 24, 2001
Revised Manuscript: February 4, 2002
Published: July 10, 2002

Thomas J. Naughton, Yann Frauel, Bahram Javidi, and Enrique Tajahuerce, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Appl. Opt. 41, 4124-4132 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. IT-10, 139–145 (1964).
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  3. A. D. McAulay, Optical Computer Architectures (Wiley, New York, 1991).
  4. A. Pu, R. F. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997). [CrossRef]
  5. R. Bamler, J. Hofer-Alfeis, “Three- and four-dimensional filter operations by coherent optics,” Opt. Acta 29, 747–757 (1982). [CrossRef]
  6. J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538–7544 (1998). [CrossRef]
  7. J. J. Esteve-Taboada, D. Mas, J. García, “Three-dimensional object recognition by Fourier transform profilometry,” Appl. Opt. 38, 4760–4765 (1999). [CrossRef]
  8. J. Guerrero-Bermúdez, J. Meneses, O. Gualdrón, “Object recognition using three-dimensional correlation of range images,” Opt. Eng. 39, 2828–2831 (2000). [CrossRef]
  9. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  10. Y. Frauel, E. Tajahuerce, M.-A. Castro, B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887–3893 (2001). [CrossRef]
  11. Ph. Réfrégier, F. Goudail, “Statistical processing of polarization diversity images,” in Optoelectronic Information Processing: Optics for Information Systems, Ph. Réfrégier, B. Javidi, C. Ferreira, S. Vallmitjana, eds., Proc. SPIECR81-13, 262–288 (2001).
  12. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  13. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  14. M. Rabbani, Selected Papers on Image Coding and Compression, SPIE Milestone SeriesMS48 (SPIE Press, 1992).
  15. L. P. Yaroslavsky, N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980). [CrossRef]
  16. O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” Prog. Opt. 28, 1–86 (1990). [CrossRef]
  17. J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  18. J. W. Goodman, A. Silvestri, “Digital reconstruction of holographic images,” Nerem Record 10, 118 (1968).
  19. A. Bilgin, G. Zweig, M. W. Marcellin, “Three-dimensional image compression with integer wavelet transforms,” Appl. Opt. 39, 1799–1814 (2000). [CrossRef]
  20. S. Qian, A. B. Hollinger, D. J. Williams, D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. 35, 3242–3249 (1996). [CrossRef]
  21. G. J. Ewing, C. J. Woodruff, “Comparison of JPEG and fractal-based image compression on target acquisition by human observers,” Opt. Eng. 35, 284–288 (1996). [CrossRef]
  22. C. A. Morioka, M. P. Eckstein, J. L. Bartroff, J. Hausleiter, G. Aharanov, J. S. Whiting, “Observer performance for JPEG vs. wavelet image compression of x-ray coronary angiograms,” Opt. Express 5, 8–19 (1999). [CrossRef] [PubMed]
  23. M. W. Farn, J. W. Goodman, “Bounds on the performance of continuous and quantized phase-only matched filters,” J. Opt. Soc. Am. A 7, 66–72 (1990). [CrossRef]
  24. A. Mahalanobis, C. Daniell, “Data compression and correlation filtering,” in Smart Imaging Systems, B. Javidi, ed. SPIE PM91 (SPIE Press, 2001), pp. 111–132.
  25. J. Vago, H. Vermeulen, A. Verga, “Fast Fourier transform based image compression algorithm optimized for speckle interferometer measurements,” Opt. Eng. 36, 3052–3063 (1997). [CrossRef]
  26. R. Shahnaz, J. F. Walkup, T. F. Krile, “Image compression in signal-dependent noise,” Appl. Opt. 38, 5560–5567 (1999). [CrossRef]
  27. F. Murtagh, J.-L. Starck, M. Louys, “Very-high-quality image compression based on noise modeling,” Int. J. Imaging Syst. Technol. 9, 38–45 (1998). [CrossRef]
  28. F. Wyrowski, O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 6, 1171–1174 (1989). [CrossRef]
  29. T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, B. Javidi, “Digital holographic data reconstruction with data compression,” Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, ed., Proc. SPIE4471 (2001).
  30. E. Y. Lam, J. W. Goodman, “Discrete cosine transform domain restoration of defocused images,” Appl. Opt. 37, 6213–6218 (1998). [CrossRef]
  31. J. W. Goodman, A. M. Silvestri, “Some effects of Fourier domain phase quantization,” IBM J. Research and Dev. 14, 478–484 (1970). [CrossRef]
  32. W. J. Dallas, A. W. Lohmann, “Phase quantization in holograms,” Appl. Opt. 11, 192–194 (1972). [CrossRef] [PubMed]
  33. H. J. Caulfield, Handbook of Optical Holography (Academic Press, San Diego, Calif., 1979).
  34. D. A. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IRE 40, 1098–1101 (1952). [CrossRef]
  35. J. Ziv, A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. IT-23, 337–343 (1977).
  36. T. A. Welch, “A technique for high performance data compression,” IEEE Computer 17, 8–19 (1984). [CrossRef]
  37. M. Burrows, D. J. Wheeler, “A block-sorting lossless data compression algorithm,” Digital SRC Report 124, (1994).
  38. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited