## Optical Finite Impulse Response Neural Networks

Applied Optics, Vol. 41, Issue 20, pp. 4162-4180 (2002)

http://dx.doi.org/10.1364/AO.41.004162

Acrobat PDF (1029 KB)

### Abstract

The finite impulse response neural network is described in detail. Different algorithms capable of temporal back-propagation are considered, including a novel modification to the conventional algorithm, called the delayed-feedback back-propagation algorithm. We present and analyze different optoelectronic processors making use of adaptive volume holograms and three-dimensional optical processing. Two single-layer architectures are presented: the input delay plane architecture and the output delay plane architecture. By combining them it is possible to implement both forward and backward propagation in two multi-layer architectures: the first making use of the conventional temporal back-propagation and the second making use of delayed-feedback back-propagation.

© 2002 Optical Society of America

**OCIS Codes**

(200.4260) Optics in computing : Neural networks

(200.4560) Optics in computing : Optical data processing

**Citation**

Paulo E. X. Silveira, G. S. Pati, and Kelvin H. Wagner, "Optical Finite Impulse Response Neural Networks," Appl. Opt. **41**, 4162-4180 (2002)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-20-4162

Sort: Year | Journal | Reset

### References

- A. H. Waibel, T. Hanazawa, G. E. H. K. Shikano, and K. J. Lang, “Phoneme Recognition Using Time-Delay Neural Networks,” IEEE Trans. Acoust. Speech Signal Process. 37, 328–339 (1989).
- K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural network architecture for isolated word recognition,” Neural Networks 3, 23–43 (1990).
- E. A. Wan, “Time Series Prediction by Using a Connectionist Network with Internal Delay Lines,” in Time Series Prediction: Forecasting the Future and Understanding the Past, SFI studies in the science of complexity, A. S. Weigend and N. A. Gershenfeld, eds., (Addison-Wesley, Reading, Mass., 1993).
- H. Gleisner, H. Lundstedt, and P. Wintoft, “Predicting geomagnetic storms from solar-wind data using time-delay neural networks,” Annales Geophysicae 14, 676–686 (1996).
- D. S. Clouse, C. L. Giles, B. G. Horne, and G. W. Cottrell, “Time-Delay Neural Networks—Representation and Induction of Finite-State Machines,” IEEE Trans. Neural Netw. 8, 1065–1070 (1997).
- F. Lavagetto, “Time-Delay Neural Networks For Estimating Lip Movements From Speech Analysis—A Useful Tool In Audio-Video Synchronization,” IEEE Trans. Circuits Systems For Video Technology 7, 786–800 (1997).
- P. E. X. Silveira, G. S. Pati, and K. H. Wagner, “Optical implementation of a single-layer finite impulse response neural network,” in Proc. Int. Conf. on Optics in Computing, R. A. Lessard and T. V. Galstian, eds., 4089, 656–667 (2000).
- P. E. X. Silveira, G. S. Pati, and K. H. Wagner, to be published in Applied Optics.
- P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997), Chap. 1, pp. 8–13.
- L. J. G. B. Widrow, P. E. Mantey, and B. B. Goode, “Adaptive Antenna Systems,” Proc. IEEE 55, 2143–2161 (1967).
- A. Cauchy, “Méthode Générale pour la Résolution des Systémes d’équations Simultanées,” Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 25, 536–538 (1847).
- B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1985).
- A. V. VanderLugt, “Adaptive Optical Processor,” Appl. Opt. 21, 4005–4011 (1982).
- D. Psaltis and J. Hong, “Adaptive acoustooptic filter,” Appl. Opt. 23, 3475–3481 (1984).
- J. Rhodes, “Adaptive filter with a time-domain implementation using correlation cancellation loops,” Appl. Opt. 22, 282–287 (1983).
- R. M. Montgomery and M. R. Lange, “Photorefractive adaptive filter structure with 40-dB interference rejection,” Appl. Opt. 30, 2844–2849 (1991).
- D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representation by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. McClelland, eds., (MIT Press, Cambridge, Mass., 1986), Chap. 8.
- D. Psaltis and Y. Qiao, “Adaptive multilayer optical networks,” Prog. Opt. 31, 227–261 (1993).
- M. A. Neifeld and D. Psaltis, “Optical implementations of radial basis classifiers,” Appl. Opt. 32, 1370–1379 (1993).
- K. Wagner and D. Psaltis, “Multilayer optical learning networks,” Appl. Opt. 26, 5061–5076 (1987).
- K. Wagner and T. M. Slagle, “Optical competitive learning with VLSI liquid-crystal winner-take-all modulators,” Appl. Opt. 32, 1408–1435 (1993).
- H. Toyoda, N. Mukohzaka, Y. Suzuki, and M. Ishikawa, “Adaptive optical-processing system with optical associative memory,” Appl. Opt. 32, 1354–1358 (1993).
- P. Lalanne, P. Chavel, and J. Taboury, “Optical inner-product implementation of neural networks models,” Appl. Opt. 28, 377–385 (1989).
- P. E. X. Silveira and K. H. Wagner, “Time delay optical neural network,” Proc. Int. Conf. on Optics in Computing 34, 266–269 (1998).
- G. Zhou and D. Z. Anderson, “Acoustic signal recognition with a photorefractive time-delay neural network,” Opt. Lett. 19, 655–657 (1994).
- E. A. Wan, “Temporal backpropagation for FIR neural networks,” in Proc. Int. Joint Conf. Neural Networks, pp. I 575–580 (Omnipress, Madison, Wisc., 1990).
- P. Werbos, Ph.D. dissertation (Harvard University, Cambridge, Mass., 1974).
- K. H. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. Weverka, and A. Sarto, “Efficient true-time-delay adaptive array processing,” in Proc. SPIE Radar Processing, Technology, and Applications, W. J. Miceli, ed., 2845, (1996).
- G. Kriehn, A. Kiruluta, P. E. X. Silveira, S. Weaver, S. Kraut, K. Wagner, R. T. Weverka, and L. Griffiths, “Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas,” Appl. Opt. 39, 212–230 (2000).
- D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Opt. Eng. 31, 2148–2158 (1992).
- G. Zhou, Ph.D. dissertation, (University of Colorado at Boulder, Boulder, Colo. 1994).
- P. E. X. Silveira and K. H. Wagner, “Optical finite impulse response neural networks,” in Algorithms, Devices, and Systems for Optical Information Processing III, B. Javidi and D. Psaltis, eds., Proc. SPIE, 3804, 72–81 (1999).
- C. Bishop, in Neural Networks for Pattern Recognition (Clarendon Press, 1995), Chap. 9, pp. 338–340.
- A. J. M. Kiruluta, G. Kriehn, P. E. X. Silveira, and K. H. Wagner, “Adaptive beamforming with TDI CCD-based true-time-delay processing,” in Algorithms, Devices, and Systems for Optical Information Processing III, B. Javidi and D. Psaltis, eds., Proc. SPIE 3804, (1999).
- T. Merlet, D. Dolfi, and J.-P. Huignard, “A traveling fringes photodetector for microwave signals,” IEEE J. Quantum Electron. 32, 778–783 (1996).
- R. T. Weverka, K. Wagner, and A. Sarto, “Photorefractive processing for large adaptive phased-arrays,” Appl. Opt. 35, 1344–1366 (1996).
- A. W. Sarto, K. H. Wagner, R. T. Weverka, S. Weaver, and E. K. Walge, “Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams,” Appl. Opt. 35, 5765–5775 (1996).
- A. Sarto, Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colo., 1996).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.