OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 21 — Jul. 20, 2002
  • pp: 4283–4306

Optical Propagation within a Three-Dimensional Shadowed Atmosphere–Ocean Field: Application to Large Deployment Structures

John P. Doyle and Giuseppe Zibordi  »View Author Affiliations

Applied Optics, Vol. 41, Issue 21, pp. 4283-4306 (2002)

View Full Text Article

Acrobat PDF (450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Estimation of optical shadowing effects that occur on in situ submerged radiance and irradiance measurements conducted in the proximity of a large and complex three-dimensional deployment structure is addressed by use of Monte Carlo simulations. We have applied backward Monte Carlo techniques and variance reduction schemes in three-dimensional radiative transfer computations of in-water light field perturbations by taking into account relevant geometric, environmental, and optical parameters that describe a realistic atmosphere-ocean system. Significant parameters, determined by a sensitivity analysis study, have then been systematically varied for the computation of an extensive set of correction factors, included in look-up tables designed for operational removal of tower-shading uncertainties, which typically induce an ~1–10% decrease in absolute radiometric data values near a specific oceanographic tower located in the northern Adriatic Sea. In principle, the proposed correction methodology can be transferred to other deployment systems, instrument casings, and measurement sites if a comprehensive description is provided for the system parameters and their variability.

© 2002 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(030.5620) Coherence and statistical optics : Radiative transfer

John P. Doyle and Giuseppe Zibordi, "Optical Propagation within a Three-Dimensional Shadowed Atmosphere–Ocean Field: Application to Large Deployment Structures," Appl. Opt. 41, 4283-4306 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1. Monte Carlo simulations,” Appl. Opt. 24, 4172–4182 (1985).
  2. K. J. Voss, J. W. Nolten, and G. D. Edwards, “Ship shadow effects on apparent optical properties,” in Ocean Optics VIII, M. A. Blizard, ed., Proc. SPIE 637, 186–190 (1986).
  3. W. S. Helliwell, G. N. Sullivan, B. MacDonald, and K. J. Voss, “Ship shadowing: model and data comparisons,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE 1302, 55–71 (1990).
  4. C. T. Weir, D. A. Siegel, A. F. Michaels, and D. W. Menzies, “In situ evaluation of a ship’s shadow,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 815–821 (1994).
  5. E. Kearns, R. Riley, and C. Woody, “Bio-optical time series collected in coastal waters for SeaWiFS calibration and validation: large structure shadowing considerations,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE 2963, 697–702 (1996).
  6. Y. Saruya, T. Oishi, M. Kishino, Y. Jodai, K. Kadokura, and A. Tanaka, “Influence of ship shadow on underwater irradiance fields,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE 2963, 760–765 (1996).
  7. G. Zibordi, J. P. Doyle, and S. B. Hooker, “Offshore tower shading effects on in-water optical measurements,” J. Atmos. Oceanic Technol. 16, 1767–1779 (1999).
  8. J. L. Mueller and R. W. Austin, “Ocean optics protocols for SeaWiFS validation, revision 1,” SeaWiFS Project Technical Report Series, NASA Tech. Memo. 104566, Vol. 25, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).
  9. H. R. Gordon and K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
  10. J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, Mass., 1969).
  11. J. P. Doyle and H. Rief, “Photon transport in three-dimensional structures treated by random walk techniques: Monte Carlo benchmark of ocean colour simulations,” Math. Comput. Simul. 47, 215–241 (1998).
  12. J. P. Doyle is preparing a Ph.D. dissertation called “Monte Carlo modelling of radiative transfer in a 3-D ocean-atmosphere system: ocean colour simulations,” (Imperial College of Science, Technology, and Medicine, University of London, London, UK, 2002).
  13. E. D. Cashwell and C. J. Everett, Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).
  14. C. Cox and W. Munk, “Slopes of the sea surface deduced from photographs of Sun glitter,” Scripps Inst. Oceanogr. Bull. 6, 401–488 (1956).
  15. K. M. Case, “Transfer problems and the reciprocity principle,” Rev. Mod. Phys. 29, 651–663 (1957).
  16. I. Lux and L. Koblinger, Monte Carlo Transport Methods; Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).
  17. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  18. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
  19. B. Bulgarelli, V. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38, 1530–1542 (1999).
  20. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
  21. J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal Atmosphere and Sea Time Series (CoASTS). Part 2: Data analysis,” in SeaWiFS Project Technical Report Series, NASA Tech. Memo. TM-2002–206892 20, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2002).
  22. G. Zibordi and M. Ferrari, “Instrument self-shading in underwater optical measurements: experimental data,” Appl. Opt. 34, 2750–2754 (1995).
  23. H. Neckel and D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).
  24. A. A. Lacis and J. E. Hansen, “Parameterization for the absorption of solar radiation in the Earth’s atmosphere,” J. Atmos. Sci. 31, 118–133 (1974).
  25. E. Vigroux, “Contribution a l’etude experimentale de l’absorption de l’ozone,” Ann. Phys. 8, 709–762 (1953).
  26. W. A. Margraaf and M. Griggs, “Aircraft measurements and calculations of the total downward flux of the solar radiation as a function of altitude,” J. Atmos. Sci. 26, 469–477 (1969).
  27. C. Frölich and G. E. Shaw, “New determination of Rayleigh scattering in the terrestrial atmosphere,” Appl. Opt. 19, 1773–1775 (1980).
  28. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
  29. A. Ångström, “Techniques of determining the turbidity of the atmosphere,” Tellus 13, 214–223 (1969).
  30. L. Elterman, “UV, visible and IR attenuation for altitudes to 50 km,” Environmental Research Papers 285, AFCRL-68–0153 (U.S. Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Mass., 1968).
  31. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
  32. B. Sturm and G. Zibordi, “SeaWiFS atmospheric correction by an approximate model and vicarious calibration,” Int. J. Remote Sens. 23, 489–501 (2002).
  33. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
  34. H. Buiteveldt, J. H. M. Hakvoort, and M. Donze, “Optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 174–183 (1994).
  35. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  36. T. J. Petzold, “Volume scattering functions for selected natural waters,” SIO Ref. 72–78 (Visibility Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, Calif., 1972).
  37. G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosphere and Sea Time Series (CoASTS). Part 1: A long-term measurement program,” in SeaWiFS Project Technical Report Series, NASA Tech. Memo. TM-2002–206892 19, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2002).
  38. Lord Rayleigh, “On the light from the sky, its polarization and colour,” Philos. Mag. 41, 107–120, (1871), reprinted in Scientific Papers by Lord Rayleigh, Vol I: 1869–1881 (Dover, New York, 1964).
  39. A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,” (“Theoretical aspects of the opalescence of homogeneous fluids and liquid mixtures near the critical state”), Ann. Phys. (Leipzig) 33, 1275–1298 (1910).
  40. S. B. Hooker and C. R. McClain, “The calibration and validation of SeaWiFS data,” Prog. Oceanogr. 45, 427–465 (2000).
  41. B. Leckner, “The spectral distribution of solar radiation at the Earth’s surface: elements of a model,” Sol. Energy 20, 143–150 (1978).
  42. H. R. Gordon and D. J. Castaño, “The Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26, 2111–2122 (1987).
  43. J. F. Potter, “The delta function approximation in radiative transfer theory,” J. Atmos. Sci. 27, 943–949 (1969).
  44. M. Tanaka and T. Nakajima, “Effects of oceanic turbidity and index of refraction of hydrosols on the flux of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 18, 93–111 (1977).
  45. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
  46. H. Rief, “Stochastic perturbation analysis applied to neutral particle transport,” Adv. Nucl. Sci. Technol. 23, 69–140 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited