## Decentered elliptical Gaussian beam

Applied Optics, Vol. 41, Issue 21, pp. 4336-4340 (2002)

http://dx.doi.org/10.1364/AO.41.004336

Enhanced HTML Acrobat PDF (171 KB)

### Abstract

A new kind of laser beam, called a decentered elliptical Gaussian beam (DEGB), is defined by a tensor method. The propagation formula for a DEGB passing through an axially nonsymmetrical paraxial optical system is derived through vector integration. The derived formula can be reduced to the formula for a fundamental elliptical Gaussian beam and a decentered Gaussian beam under certain conditions. As an example application of the derived formula, the propagation characteristics of a DEGB in free space are calculated and discussed. As another example we study the properties of a generalized laser beam array constructed by use of a DEGB as the fundamental mode.

© 2002 Optical Society of America

**OCIS Codes**

(140.3290) Lasers and laser optics : Laser arrays

(140.3300) Lasers and laser optics : Laser beam shaping

**History**

Original Manuscript: September 4, 2001

Revised Manuscript: April 22, 2002

Published: July 20, 2002

**Citation**

Yangjian Cai and Qiang Lin, "Decentered elliptical Gaussian beam," Appl. Opt. **41**, 4336-4340 (2002)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-21-4336

Sort: Year | Journal | Reset

### References

- L. W. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2423–2441 (1973). [CrossRef]
- A. R. Al-Rashed, B. E. A. Saleh, “Decentered Gaussian beams,” Appl. Opt. 34, 6819–6825 (1995). [CrossRef] [PubMed]
- C. Palma, “Decentered Gaussian beams, ray bundles, and Bessel-Gaussian beams,” Appl. Opt. 36, 1116–1120 (1997). [CrossRef] [PubMed]
- B. Lü, H. Ma, “Coherent and incoherent combinations of off-axis Gaussian beams with rectangular symmetry,” Opt. Commun. 171, 185–194 (1999). [CrossRef]
- B. Lü, H. Ma, “Coherent and incoherent off-axis Hermite-Gaussian beam combinations,” Appl. Opt. 39, 1279–1289 (2000). [CrossRef]
- B. Lü, H. Ma, “The beam quality in coherent and incoherent combinations of one-dimensional off-axis Hermite-Gaussian beams,” Optik (Stuttgart) 111, 269–272 (2000).
- P. J. Cronin, P. Török, P. Varga, C. Cogswell, “High-aperture diffraction of a scalar, off-axis Gaussian beam,” J. Opt. Soc. Am. A 17, 1556–1564 (2000). [CrossRef]
- Q. Lin, S. Wang, J. Alda, E. Bernabeu, “Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law,” Optik (Stuttgart) 85, 67–72 (1990).
- J. Alda, S. Wang, E. Bernabeu, “Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams,” Opt. Commun. 80, 350–352 (1991). [CrossRef]
- K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “High-power two-dimensional waveguide CO2 laser arrays,” IEEE J. Quantum Electron. 32, 340–349 (1996). [CrossRef]
- H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, E. F. Yelden, “Propagation characteristics of coherent array beam from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron. 32, 400–407 (1996). [CrossRef]
- W. D. Bilida, J. D. Strohschein, H. J. J. Seguin, “High-power 24 channel radial array slab RF-excited carbon dioxide laser,” in Gas and Chemical Lasers and Applications II, R. C. Sze, E. A. Dorko, eds., Proc. SPIE2987, 13–21 (1997). [CrossRef]
- J. D. Strohschein, H. J. J. Seguin, C. E. Capjack, “Beam propagation constant for a radial laser array,” Appl. Opt. 37, 1045–1048 (1998). [CrossRef]
- B. Lü, H. Ma, “Beam propagation properties of radial lasers arrays, ” J. Opt. Soc. Am. A 17, 2005–2009 (2000). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.