OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 21 — Jul. 20, 2002
  • pp: 4347–4355

Analysis of dual-wavelength oscillation in a broad-area diode laser operated with an external cavity

Jean-François Lepage and Nathalie McCarthy  »View Author Affiliations

Applied Optics, Vol. 41, Issue 21, pp. 4347-4355 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Apodizing holographic gratings used in an external cavity have shown to be effective to control the modal content of multimode broad-area diode lasers, providing single longitudinal-mode and single lateral-mode emission. They can also be designed to provide Littrow reflection at two wavelengths. We observed stable oscillation at two wavelengths in a diode laser with an external cavity ended with such a grating. This is not a common behavior for homogeneously broadened gain media. We present simulations of the behavior of this laser based on a rate equation analysis. The effects of spatial hole burning and spontaneous emission are examined.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2770) Diffraction and gratings : Gratings
(090.2890) Holography : Holographic optical elements
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(220.1230) Optical design and fabrication : Apodization

Original Manuscript: November 26, 2001
Revised Manuscript: April 15, 2002
Published: July 20, 2002

Jean-François Lepage and Nathalie McCarthy, "Analysis of dual-wavelength oscillation in a broad-area diode laser operated with an external cavity," Appl. Opt. 41, 4347-4355 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, N. McCarthy, “Apodizing holographic gratings for the modal control of semiconductor lasers,” Appl. Opt. 36, 4993–4998 (1997). [CrossRef] [PubMed]
  2. Ch. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” in Innovative Optics and Phase Conjugate Optics, R.-J. Ahlers, T. T. Tschudi, eds., Proc. SPIE1500, 264–274 (1991). [CrossRef]
  3. J.-F. Lepage, N. McCarthy, “Apodizing holographic gratings for dual-wavelength operation of broad-area semiconductor lasers,” Appl. Opt. 37, 8420–8425 (1998). [CrossRef]
  4. T. Hidaka, Y. Hatano, “Simulaneous two wave oscillation LD using biperiodic binary grating,” Electron. Lett. 27, 1075–1076 (1991). [CrossRef]
  5. K.-S. Lee, C. Shu, “Stable and widely tunable dual-wavelength continuous wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997). [CrossRef]
  6. C.-L. Pan, C.-L. Wang, “A novel tunable dual-wavelength external-cavity laser diode array and its applications,” Opt. Quantum Electron. 28, 1239–1257 (1996). [CrossRef]
  7. S. Iio, M. Suehiro, T. Hirata, T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995). [CrossRef]
  8. M. H. Mourad, J. P. Vilcot, D. Decoster, D. Marcenac, “Design and simulation of a dual mode semiconductor laser using sampled grating DFB structure,” IEE Proc. Optoelectron. 147, 37–42 (2000). [CrossRef]
  9. P.-C. Ku, C.-F. Lin, B.-L. Lee, “Multiple cross switching in a two-mode semiconductor laser,” Appl. Phys. Lett. 69, 3984–3986 (1996). [CrossRef]
  10. E. C. Mos, J. J. H. B. Schleipen, H. de Waardt, G.-D. Kloe, “Longitudinal mode-switching in dual external-cavity laser diode,” IEEE J. Quantum Electron. 36, 486–495 (2000). [CrossRef]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1985).
  12. B. Zee, “Broadening mechanism in semiconductor (GaAs) lasers: limitations to single mode power emission,” IEEE J. Quantum Electron. QE-14, 727–736 (1978). [CrossRef]
  13. A. Gearba, G. Cone, “Numerical analysis of laser mode competition and stability,” Phys. Lett. A 269, 112–119 (2000). [CrossRef]
  14. F. X. Kärtner, B. Braun, U. Keller, “Continuous-wave mode-locked solid state lasers with enhanced spatial hole burning. Part II: Theory,” Appl. Phys. B. 61, 569–579 (1995). [CrossRef]
  15. H. G. Danielmeyer, “Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation,” J. Appl. Phys. 42, 3125–3132 (1971). [CrossRef]
  16. J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,” Opt. Lett. 15, 431–433 (1990). [CrossRef] [PubMed]
  17. T. Kimura, K. Otsuka, M. Saruwatari, “Spatial hole-burning effects in a Nd3+:YAG laser,” IEEE J. Quantum Electron. QE-7, 225–230 (1971). [CrossRef]
  18. I. V. Hertel, A. S. Stamatovic, “Spatial hole burning and oligo-mode distance control in CW dye lasers,” IEEE J. Quantum Electron. QE-11, 210–212 (1975). [CrossRef]
  19. G. P. Agrawal, N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).
  20. G. P. Agrawal, “Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 26, 1901–1909 (1990). [CrossRef]
  21. W. Brunner, R. Fisher, H. Paul, “Regular and chaotic behavior of multimode lasers,” J. Opt. Soc. Am. B 2, 202–210 (1985). [CrossRef]
  22. I. McMackin, C. Radzewicz, M. Beck, M. G. Raymer, “Instabilities and chaos in a multimode, standing wave, cw dye laser,” Phys. Rev. A 38, 820–832 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited