OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 21 — Jul. 20, 2002
  • pp: 4356–4359

Broadly tunable continuous-wave orange-red source based on intracavity-doubled Cr4+:forsterite laser

Alphan Sennaroglu  »View Author Affiliations


Applied Optics, Vol. 41, Issue 21, pp. 4356-4359 (2002)
http://dx.doi.org/10.1364/AO.41.004356


View Full Text Article

Enhanced HTML    Acrobat PDF (81 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The operation of a room-temperature, continuous-wave, intracavity frequency-doubled Cr4+:forsterite laser capable of producing broadly tunable output in the orange-red region of the electromagnetic spectrum is described. Intracavity doubling was achieved in a periodically poled lithium niobate crystal that had gratings with different periods. Tunable second-harmonic output could be obtained between 613 and 655 nm. At a wavelength of 630 nm, intracavity doubling yielded as much as 45 mW of continuous-wave output. To the author’s knowledge, this represents the highest second-harmonic-power generation obtained to date with a continuous-wave Cr4+:forsterite laser.

© 2002 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.7300) Lasers and laser optics : Visible lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

History
Original Manuscript: December 12, 2001
Revised Manuscript: April 2, 2002
Published: July 20, 2002

Citation
Alphan Sennaroglu, "Broadly tunable continuous-wave orange-red source based on intracavity-doubled Cr4+:forsterite laser," Appl. Opt. 41, 4356-4359 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-21-4356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994). [CrossRef]
  2. W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5 W, continuous wave, 629 nm solid-state laser source,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 68–71.
  3. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 micron and 605–635 nanometer wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994). [CrossRef]
  4. V. P. Yanovsky, F. W. Wise, “Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity,” Opt. Lett. 19, 1952–1954 (1994). [CrossRef] [PubMed]
  5. X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997). [CrossRef]
  6. J. M. Evans, V. Petricevic, R. R. Alfano, Q. Fu, “Kilohertz Cr:forsterite regenerative amplifier,” Opt. Lett. 23, 1692–1694 (1998). [CrossRef]
  7. T.-M. Liu, S.-P. Tai, C.-K. Sun, “Intracavity frequency-doubled femtosecond Cr4+:forsterite laser,” Appl. Opt. 40, 1957–1960 (2001). [CrossRef]
  8. I. T. McKinnie, A. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997). [CrossRef]
  9. S. M. Giffin, I. T. McKinnie, “Tunable visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite in KTP,” Opt. Lett. 24, 884–886 (1999). [CrossRef]
  10. N. Zhavoronkov, V. Petrov, F. Noack, “Powerful and tunable operation of a 1-2-kHz repetition-rate gain-switched Cr:forsterite laser and its frequency doubling,” Appl. Opt. 38, 3285–3293 (1999). [CrossRef]
  11. J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999). [CrossRef]
  12. A. Sennaroglu, “Optimum crystal parameters for room-temperature Cr4+:forsterite lasers: experiment and theory,” Opt. Commun. 174, 215–222 (2000). [CrossRef]
  13. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  14. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  15. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]
  16. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  17. D. R. Preuss, J. L. Gole, “Three-stage birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19, 702–710 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited