OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 21 — Jul. 20, 2002
  • pp: 4365–4376

Femtosecond Measurements of Two-Photon Absorption Coefficients at λ = 264 nm in Glasses, Crystals, and Liquids

Adrian Dragonmir, John G. McInerney, and David N. Nikogosyan  »View Author Affiliations

Applied Optics, Vol. 41, Issue 21, pp. 4365-4376 (2002)

View Full Text Article

Acrobat PDF (199 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using ultraviolet femtosecond pulses with high irradiance stability, we measured the two-photon absorption (TPA) coefficients in a number of substances with a total accuracy of ~10%. Six commercial fused-silica samples (KU-1, Corning 7940, SQ, Suprasil, Herasil, and Infrasil) possess TPA coefficients (β values) of ~2 × 10<sup>−11</sup> cm/W. For crystalline quartz and sapphire, the following β values were obtained: (1.2 ± 0.2) × 10<sup>−11</sup> and (9.4 ± 1.2) × 10<sup>−11</sup> cm/W, respectively. In β-barium borate crystal the TPA coefficient depends on crystal cut, beam polarization, or both and varies from (47 ± 5) × 10<sup>−11</sup> to (68 ± 6) × 10<sup>−11</sup> cm/W. For eight liquids that were studied (water, heavy water, ethanol, methanol, hexane, cyclohexane, 1, 2-dichloroethane, and chloroform) the β value lies from (34 ± 3) × 10<sup>−11</sup> to (95 ± 11) × 10<sup>−11</sup> cm/W.

© 2002 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.6030) Materials : Silica
(190.4180) Nonlinear optics : Multiphoton processes

Adrian Dragonmir, John G. McInerney, and David N. Nikogosyan, "Femtosecond Measurements of Two-Photon Absorption Coefficients at λ = 264 nm in Glasses, Crystals, and Liquids," Appl. Opt. 41, 4365-4376 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
  2. M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. (Leipzig) 9, 273–295 (1931).
  3. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, Chichester, UK, 1997).
  4. G. G. Gurzadyan and R. K. Ispiryan, “Two-photon absorption in potassium dihydrophosphate, potassium pentaborate and quartz crystals at 270 and 216 nm,” Int. J. Nonlin. Opt. Phys. 1, 533–540 (1992).
  5. P. Liu, R. Yen, and N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015–1018 (1979).
  6. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4632 (1978).
  7. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
  8. K. Hata, M. Watanabe, and S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
  9. T. Tomie, I. Okuda, and M. Yano, “Three-photon absorption in CaF2 at 248.5 nm,” Appl. Phys. Lett. 55, 325–327 (1989).
  10. A. J. Taylor, R. B. Gibson, and J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials,” Opt. Lett. 13, 814–816 (1988).
  11. P. Simon, H. Gerhardt, and S. Shatmari, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207–1209 (1989).
  12. I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, and I. Coffey, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990).
  13. E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143–149 (1996).
  14. R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
  15. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
  16. R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenter, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 458–467 (1995).
  17. Yu. A. Repeyev, E. V. Khoroshilova, and D. N. Nikogosyan, “212.8 nm laser photolysis of aromatic and aliphatic amino acids and related peptides,” J. Photochem. Photobiol. B 12, 259–274 (1992).
  18. O. Kittelmann and J. Ringling, “Intensity-dependent transmission properties of window materials at 193-nm irradiation,” Opt. Lett. 19, 2053–2055 (1994).
  19. “Twinkle, highly integrated pico/femtosecond CPA Nd:glass laser system,” http://www.lightcon.com.
  20. A. Umbrasas, J.-C. Diels, J. Jacob, G. Valiulis, and A. Piskarskas, “Generation of femtosecond pulses through second-harmonic compression of the output of a Nd:YAG laser,” Opt. Lett. 20, 2228–2230 (1995).
  21. A. Dubietis, G. Tamošauskas, and A. Varanavičius, “Femtosecond third-harmonic pulse generation by mixing of pulses with different duration,” Opt. Commun. 186, 211–217 (2000).
  22. G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
  23. A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, and R. Danielius, “Generation of femtosecond radiation at 211 nm by femtosecond pulse upconversion in the field of a picosecond pulse,” Opt. Lett. 25, 1116–1118 (2000).
  24. J. Ní Chróinín, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, “Accurate determination of two-photon absorption coefficients in fused silica and crystalline quartz at 264 nm,” Opt. Commun. 187, 185–191 (2001).
  25. A. Dubietis, G. Timošauskas, A. Varanavičius, G. Valiulis, and R. Danielius, “Highly efficient subpicosecond pulse generation at 211 nm,” J. Opt. Soc. Am. B 17, 48–52 (2000).
  26. Y. P. Kim and M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989).
  27. A. Reuther, A. Laubereau, and D. N. Nikogosyan, “A simple method for the in situ analysis of femtosecond UV pulses in the pump-probe spectroscopy of solutions,” Opt. Commun. 141, 180–184 (1997).
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 678–694.
  29. J. R. Taylor, An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements, 2nd ed. (University Science, Sausalito, Calif., 1997), pp. 173–179.
  30. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
  31. “Quartz Glass for Optics. Data and Properties” (A datasheet from Heraeus Quartzglas GmbH, Hanan, Germany, 1994).
  32. R. B. Sosman, The Properties of Silica (Chemical Catalog Company, New York, 1927).
  33. I. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52, 1377–1379 (1962).
  34. A. Dubietis, G. Timošauskas, A. Varanavičius, and G. Valiulis, “Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm,” Appl. Opt. 39, 2437–2440 (2000).
  35. D. N. Nikogosyan, “Beta barium borate (BBO). A review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
  36. K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
  37. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
  38. T. D. Krauss, J. K. Ranka, F. W. Wise, and A. L. Gaeta, “Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors,” Opt. Lett. 20, 1110–1112 (1995).
  39. M. Dabbicco and I. M. Catalano, “Measurement of the anisotropy of the two-photon absorption coefficient in ZnSe near half the band gap,” Opt. Commun. 178, 117–121 (2000).
  40. K. R. Allakhverdiev, Z. Yu. Salaeva, A. B. Orun, “Two-photon absorption in CdGa2S4 and CdGa2S3.96Se0.04 crystals,” Opt. Commun. 167, 95–98 (1999).
  41. S. Pearl, S. Fastig, Y. Ehrlich, and R. Lavi, “Limited efficiency of a silver selenogallate optical parametric oscillator caused by two-photon absorption,” Appl. Opt. 40, 2490–2492 (2001).
  42. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), pp. 1–685.
  43. D. N. Nikogosyan and D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Dokl. Akad. Nauk SSSR 253, 733–734 (1980).
  44. D. N. Nikogosyan and D. A. Angelov, “Formation of free radicals in water under high-power laser UV irradiation,” Chem. Phys. Lett. 77, 208–210 (1981).
  45. D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation,” Chem. Phys. 77, 131–143 (1983).
  46. A. Reuther, D. N. Nikogosyan, and A. Laubereau, “Primary photochemical processes in thymine in concentrated aqueous solution studied by femtosecond UV spectroscopy,” J. Phys. Chem. 100, 5570–5577 (1996).
  47. G. G. Gurzadyan and R. K. Ispiryan, “Nonlinear defocusing of a laser beam due to nonlinear absorption of radiation,” Opt. Spektrosk. 68, 1348–1351 (1990) [Opt. Spectrosc. (USSR) 68, 790–792 (1990)].
  48. Yu. A. Repeev and I. P. Terenetskaya “Laser photosynthesis of previtamin D: new effects of high-intensity picosecond irradiation,” Kvantovaya Elektron. 23, 765–768 (1996) [Quantum Electron. 26, 746–749 (1996)].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited