OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 21 — Jul. 20, 2002
  • pp: 4421–4431

Least-mean-squares algorithm to determine submicrometer particle diameter, volume fraction, and size distribution width by elastic light scattering

R. Patrick Earhart and Terry E. Parker  »View Author Affiliations


Applied Optics, Vol. 41, Issue 21, pp. 4421-4431 (2002)
http://dx.doi.org/10.1364/AO.41.004421


View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A computationally fast method to determine values and their uncertainty for particulate system volume median diameter, volume fraction, and size distribution width is presented. These properties cannot be obtained for submicrometer particulate by diffraction-based methods. The technique relies on a least-mean-squares method applied over a prespecified size range and distribution width. Prespecifying the range significantly reduces the number of calculations required to determine the particulate parameters from experimental data, allowing the practical evaluation of large data sets. The solution method that was developed has significant advantages over ratio-style calculations that are more commonly performed, the primary of which is a simple method to determine errors in the measurement parameters. We evaluated the predicted performance for a specific experimental system for various levels of noise, with monodisperse and log-normal distributions, by analyzing synthetic data with the algorithm. Results were a quantitative statement of system accuracy. In addition, synthetic log-normal data evaluated with monodisperse models revealed significant and systematic errors in the predicted volume median diameter. These errors indicate that, in general, systems with a significant size distribution width must be analyzed with a model that includes this size distribution. Finally, calibrated polystyrene spheres were measured with an experimental system that used four simultaneous scattering measurements, and all diameters were within the reported uncertainty.

© 2002 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.3200) Scattering : Inverse scattering
(290.4020) Scattering : Mie theory
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: December 13, 2001
Revised Manuscript: May 13, 2002
Published: July 20, 2002

Citation
R. Patrick Earhart and Terry E. Parker, "Least-mean-squares algorithm to determine submicrometer particle diameter, volume fraction, and size distribution width by elastic light scattering," Appl. Opt. 41, 4421-4431 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-21-4421

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited