OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 22 — Aug. 1, 2002
  • pp: 4451–4459

Photoacoustic Probes for Nondestructive Testing and Biomedical Applications

Pavel A. Fomitchov, Alexei K. Kromine, and Sridhar Krishnaswamy  »View Author Affiliations

Applied Optics, Vol. 41, Issue 22, pp. 4451-4459 (2002)

View Full Text Article

Acrobat PDF (1549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber-optic photoacoustic sources for nondestructive testing and biomedical applications are described. The photoacoustic sources consist of a pulsed laser, a fiber-optic cable, and a generation head. The generation head is a miniature hermetically sealed chamber, which can be embedded into solid structures or immersed in liquid media. The face of the chamber acts as a target for laser irradiation. Bulk ultrasonic waves generated inside of the target are transmitted into the medium. The proposed systems offer wide ultrasonic range (0.5–15 MHz), easy control over directivity of the ultrasonic beam, high efficiency of generation, and the ability to operate in a harsh environment. Sources with different radiation patterns with respect to the optical axis of the fiber, such as normal, sideways, as well as focused, have been devised. We present a proof-of-concept experiment using these sources in combination with fiber-optic ultrasonic receivers.

© 2002 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(110.7170) Imaging systems : Ultrasound
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.7170) Medical optics and biotechnology : Ultrasound

Pavel A. Fomitchov, Alexei K. Kromine, and Sridhar Krishnaswamy, "Photoacoustic Probes for Nondestructive Testing and Biomedical Applications," Appl. Opt. 41, 4451-4459 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, New York, 1990).
  2. V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE 3916, 36–47 (2000).
  3. E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography,” in Biomedical Optoacoustics, A. A. Oraevsky, ed., Proc. SPIE 3916, 55–66 (2000).
  4. J. M. Dodick, “Surgical instrument with input power transducer,” U.S. patent 5,324,282 (28 June 1994).
  5. W. Benett, P. Celliers, L. Da Silva, M. Glinsky, R. London, D. Maitland, D. Matthews, P. Krulevich, and A. Lee, “Opto-acoustic transducer for medical applications,” U.S. patent 5,944,687 (31 August 1999).
  6. F. S. Nikolaevich, K. V. Grigorievna, B. A. Vyacheslavovich, E. A. Viktorovich, and A. J. Vladislavovich, “Device for removing cataracts,” U.S. patent 6,322,557 (27 November 2001).
  7. P. A. Fomitchov, A. Kromine, S. Krishnaswamy, J. D. Achenbach, U. K. Kim, and I. M. Daniel, “Laser ultrasonic enabled ‘smart’ mold for composite parts manufacturing,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds., AIP Conf. Proc. 20, 1802–1807 (2000).
  8. D. L. Balageas, N. Jaroslavsky, M. Dupont, and F. Lepoutre, “Ultrasound generation in composites via embedded optical fiber,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson and D. Chimenti, eds., AIP Conf. Proc. 17, 691–698 (1998).
  9. Q. X. Chen, R. J. Dewhurst, P. A. Payne, and B. Wood, “A new laser-ultrasound transducer for medical applications,” Ultrasonics 32, 309–313 (1994).
  10. K. A. Roome, P. A. Payne, and R. J. Dewhurst, “Towards a sideways looking intravascular laser-ultrasound probe,” Sens. Actuators A 76 (1–3), 197–202 (1999).
  11. P. C. Beard, F. Perennes, E. Draguioti, and T. N. Mills, “Optical fiber photoacoustic-photothermal probe,” Opt. Lett. 23, 1235–1237 (1998).
  12. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
  13. R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock-waves in the pulsed-laser ablation of biotissue,” Lasers Surg. Med. 13, 470–484 (1993).
  14. A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
  15. I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001).
  16. A. J. De Maria and M. J. Brienza, “Laser induced acoustic generator,” U.S. patent 3,532,181 (6 October 1970).
  17. R. J. Von Gutfeld and R. L. Melcher, “20-MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces,” Appl. Phys. Lett. 33, 175–181 (1980).
  18. M. Oksanen and J. Wu, “Prediction of the temporal shape of an ultrasonic pulse in a photoacoustic sensing application,” Ultrasonics 32, 43–46 (1994).
  19. R. J. Von Gutfeld, “Thermoelastic generation of elastic waves for non-destructive testing and medical applications,” Ultrasonics 18, 175–181 (1980).
  20. E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis,” Opt. Rev. 4, 481–483 (1997).
  21. D. Menichelli and E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. 3(4), 23–31 (2001).
  22. J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Materials, 3rd ed. (Springer-Verlag, New York, 1983).
  23. P. A. Fomitchov, Y. K. Kim, A. K. Kromine, S. Krishnaswamy, J. D. Achenbach, and I. M. Daniel, “Distributed photoacoustic system for cure monitoring of composites,” in Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, T. Kundu, ed., Proc. SPIE 4335, 323–329 (2001).
  24. C. I. Swift, S. G. Pierce, and B. Culshaw, “Laser generated ultrasound using directly coated fibre optic patchcords,” Electron. Lett. 36, 2113–2114 (2000).
  25. P. A. Fomitchov, A. K. Kromine, S. Krishnaswamy, and J. D. Achenbach, “Fiberized laser ultrasonic source for process monitoring and biomedical applications,” in Applications of Optical Fiber Sensors, A. J. Rogers, ed., Proc. SPIE 4074, 127–134 (2000).
  26. E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1669–1680 (2001).
  27. M. Dubois, P. W. Lorraine, B. Venchiarutti, A. S. Bauco, R. J. Filkins, T. E. Drake, and K. R. Yawn, “Optimization of temporal profile and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson and D. Chimenti, eds., AIP Conf. Proc. 19A, 287–294 (2000).
  28. C. Edwards, T. Stratoudaki, S. Dixon, and S. B. Palmer, “Laser based ultrasound generation efficiency in carbon fibre reinforced composites,” in Review of Progress in Quantitative Nondestructive Evaluation, D. Thompson and D. Chimenti, eds., AIP Conf. Proc. 20A, 220–227 (2001).
  29. M. Dubois, P. W. Lorraine, R. J. Filkins, and T. E. Drake, “Experimental comparison between optical spectroscopy and laser-ultrasound generation in polymer-matrix composites,” Appl. Phys. Lett. 79, 1813–1815 (2001).
  30. P. A. Lewin, R. Bhatia, Q. Zhang, and J. M. Dodick, “Characterization of optoacoustic surgical devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 519–526 (1996).
  31. R. Erbel, ed., Intravascular Ultrasound (Martin Dunitz, London, 1998).
  32. D. A. Hutchins, R. J. Dewhurst, and S. B. Palmer, “Directivity patterns of laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 70, 1362–1369 (1981).
  33. S. Fassbender, B. Hoffmann, and W. Arnold, “Efficient generation of acoustic pressure waves by short laser pulses,” Mater. Sci. Eng. A 122, 37–41 (1989).
  34. K. L. Telschow and R. J. Conant, “Optical and thermal parameter effects on laser-generated ultrasound,” J. Acoust. Soc. Am. 88, 1494–1502 (1990).
  35. A. Dandridge, “Fiber optic sensors based on the Mach-Zehnder and Michelson interferometers,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists, E. Udd, ed. (Wiley, New York, 1991), pp. 271–323.
  36. P. A. Fomitchov, T. W. Murray, and S. Krishnaswamy, “Intrinsic fiber-optic ultrasonic sensor array using multiplexed two-wave mixing interferometry,” Appl. Opt. 41, 1262–1266 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited