Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films

Not Accessible

Your library or personal account may give you access

Abstract

We focus on the fabrication and study of controllable holographic gratings based on azo-dye-doped and undoped polymer-ball-type polymer-dispersed liquid-crystal films. Experimental results indicate that the next step of photopolymerization of the sample with the illumination of Ar+ laser beams after UV curing causes a latent density grating to be recorded. This grating is formed by a selective secondary photopolymerization. Heating and applying a voltage change the structure of the liquid crystal and induce the appearance of the latent grating. Diffraction efficiencies versus temperature, voltage, and state of polarization are studied for both dye-doped and undoped cells and are found to be quite different. This discrepancy is attributable to the reorientation effect of liquid crystals through their interaction with the photo-induced adsorption of the doped dyes on the surface of polymer balls in the dye-doped cell.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization holographic grating based on azo-dye-doped polymer-ball-type polymer-dispersed liquid crystals

Andy Ying-Guey Fuh, Chia-Rong Lee, and Ting-Shan Mo
J. Opt. Soc. Am. B 19(11) 2590-2594 (2002)

Polarization-independent holographic gratings based on azo-dye-doped polymer-dispersed liquid-crystal films

Andy Ying-Guey Fuh, Che-Chang Chen, Ko-Ting Cheng, Cheng-Kai Liu, and Wei-Ko Chen
Appl. Opt. 49(2) 275-280 (2010)

All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals

Hossein Jashnsaz, Nahid Hosain Nataj, Ezeddin Mohajerani, and Amir Khabbazi
Appl. Opt. 50(22) 4295-4301 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved