OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 22 — Aug. 1, 2002
  • pp: 4596–4602

Estimation of thermal coefficients of magneto-optical media

Xiaodong Xun, Chubing Peng, and Masud Mansuripur  »View Author Affiliations

Applied Optics, Vol. 41, Issue 22, pp. 4596-4602 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Previously we described a method for estimating the thermal conductivity of magneto-optic recording media. The method relies on identifying the laser power that brings the maximum temperature of the TbFeCo layer to as high as the Curie temperature. We extensively use a similar method to estimate the heat capacity of a dielectric layer, a TbFeCo layer, and an aluminum alloy layer of magneto-optic recording media. Measurements are conducted on static disks with a beam of light focused on a TbFeCo layer. The method has the advantage of thermal diffusion depending on a multilayer structure and irradiation time.

© 2002 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(210.3820) Optical data storage : Magneto-optical materials
(210.4810) Optical data storage : Optical storage-recording materials
(310.6870) Thin films : Thin films, other properties

Original Manuscript: October 18, 2001
Revised Manuscript: March 4, 2002
Published: August 1, 2002

Xiaodong Xun, Chubing Peng, and Masud Mansuripur, "Estimation of thermal coefficients of magneto-optical media," Appl. Opt. 41, 4596-4602 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge U. Press, London, 1995). [CrossRef]
  2. T. Maeda, “High-density recording mechanism of magneto-optical disks,” Jpn. J. Appl. Phys. 36, 504–513 (1997). [CrossRef]
  3. T. Abiko, A. Konishi, M. Kagawa, S. Igarashi, “Thermal response design for high recording density magneto-optical media,” Jpn. J. Appl. Phys. 36, 410–413 (1997). [CrossRef]
  4. X. Xun, C. Peng, M. Mansuripur, “Estimation of thermal conductivity of magneto-optic media,” Appl. Opt. 39, 4355–4360 (2000). [CrossRef]
  5. K. H. Tsang, H. W. Kui, K. P. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993). [CrossRef]
  6. F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, “Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals,” Rev. Sci. Instrum. 68, 4191–4195 (1997). [CrossRef]
  7. D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S. K. Watson, F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K,” Rev. Sci. Instrum. 65, 946–959 (1994). [CrossRef]
  8. E. M. Forgan, S. Nedjat, “Heat capacity cryostat and novel methods of analysis for small specimens in the 1.5–10-K range,” Rev. Sci. Instrum. 51, 411–417 (1980). [CrossRef]
  9. S. W. Indermuehle, R. B. Peterson, “A phase-sensitive technique for the thermal characterization of dielectric thin films,” Trans. ASME 121, 528–536 (1999). [CrossRef]
  10. J. Morikawa, T. Hashimoto, “Analysis of high-order harmonics of temperature wave for Fourier transform thermal analysis,” Jpn. J. Appl. Phys. 37, Part 2, L1485–L1487 (1998).
  11. R. T. Swimm, “Photoacoustic determination of thin film thermal properties,” Appl. Phys. Lett. 42, 955–957 (1983). [CrossRef]
  12. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996). [CrossRef]
  13. C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986). [CrossRef]
  14. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999). [CrossRef]
  15. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-induced local heating of multilayer,” Appl. Opt. 21, 1106–1114 (1982). [CrossRef] [PubMed]
  16. J. E. Stanworth, Physical Properties of Glass, (Clarendon, Oxford, U.K., 1950).
  17. P. Eriksson, J. Y. Anderson, G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6, 55–61 (1997). [CrossRef]
  18. X. Zhang, C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115–1120 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited