OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 22 — Aug. 1, 2002
  • pp: 4666–4670

Comparison of Designs of Off-Axis Gregorian Telescopes for Millimeter-Wave Large Focal-Plane Arrays

Shaul Hanany and Daniel P. Marrone  »View Author Affiliations


Applied Optics, Vol. 41, Issue 22, pp. 4666-4670 (2002)
http://dx.doi.org/10.1364/AO.41.004666


View Full Text Article

Acrobat PDF (112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare the diffraction-limited field of view (FOV) provided by four types of off-axis Gregorian telescopes: the classical Gregorian, the aplanatic Gregorian, and the designs that cancel astigmatism and both astigmatism and coma. The analysis is carried out with telescope parameters that are appropriate for satellite and balloonborne millimeter- and submillimeter-wave astrophysics. We find that the design that cancels both coma and astigmatism provides the largest flat FOV, ~21 square deg. We also find that the FOV can be increased by ~15% by means of optimizing the shape and location of the focal surface.

© 2002 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(110.6770) Imaging systems : Telescopes
(220.1000) Optical design and fabrication : Aberration compensation
(220.1250) Optical design and fabrication : Aspherics
(220.4830) Optical design and fabrication : Systems design
(260.5430) Physical optics : Polarization

Citation
Shaul Hanany and Daniel P. Marrone, "Comparison of Designs of Off-Axis Gregorian Telescopes for Millimeter-Wave Large Focal-Plane Arrays," Appl. Opt. 41, 4666-4670 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-22-4666


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. S. Holland, E. I. Robson, W. K. Gear, C. R. Cunningham, J. F. Lightfoot, T. Jenness, R. J. Ivison, J. A. Stevens, P. A. R. Ade, M. J. Griffin, W. D. Duncan, J. A. Murphy, and D. A. Naylor, “SCUBA: a common-user submillimetre camera operating on the James Clerk Maxwell Telescope,” Rep. astro-ph/9809122 (Los Alamos National Laboratory, Albuquerque, N. Mex. (1998), http://xxx.lanl.gov/abs/astro-ph/9809122.
  2. J. Glenn, J. J. Bock, G. Chattopadhyay, S. F. Edgington, A. E. Lange, J. Zmuidzinas, P. D. Mauskopf, B. Rownd, L. Yuen, and P. A. Ade, “Bolocam: a millimeter-wave bolometric camera,” in Advanced Technology MMW, Radio, and Terahertz Telescopes, T. G. Phillips, ed., Proc. SPIE 3357, 326–334 (1998).
  3. P. Agnese, C. Buzzi, P. Rey, L. Rodriguez, and J.-L. Tissot, “New technological development for far-infrared bolometer arrays,” in Infrared Technology and Applications XXV, B. F. Andresen and M. S. Scholl, eds., Proc. SPIE 3698, 284–290 (1999).
  4. D. J. Benford, E. Serabyn, T. G. Phillips, and S. H. Moseley, “Development of a broadband submillimeter grating spectrometer,” in Advanced Technology MMW, Radio, and Terahertz Telescopes, T. G. Phillips, ed., Proc. SPIE 3357, 278–288 (1998).
  5. J. J. Bock, J. Glenn, S. M. Grannan, K. D. Irwin, A. E. Lange, H. G. Leduc, and A. D. Turner, “Silicon nitride micromesh bolometer arrays for SPIRE,” in Advanced Technology MMW, Radio, and Terahertz Telescopes, T. G. Phillips, ed., Proc. SPIE 3357, 297–304 (1998).
  6. E. Kreysa, H.-P. Gemuend, J. Gromke, C. G. Haslam, L. Reichertz, E. E. Haller, J. W. Beeman, V. Hansen, A. Sievers, and R. Zylka, “Bolometer array development at the Max-Planck-Institut fuer Radioastronomie,” in Advanced Technology MMW, Radio, and Terahertz Telescopes, T. G. Phillips, ed., Proc. SPIE 3357, 319–325 (1998).
  7. J. M. Gildemeister, A. T. Lee, and P. L. Richards, “Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers,” Appl. Phys. Lett. 77, 4040–4042 (2000).
  8. C. Dragone and D. C. Hogg, “The radiation and impedance pattern of offset and symmetrical near-field cassegrainian and Gregorian antennas,” IEEE Trans. Antennas Propag. 22, 472–475 (1974).
  9. A. Benoit, P. Ade, A. Amblard, R. Ansari, E. Aubourg, J. Bartlett, J. P. Bernard, R. S. Bhatia, A. Blanchard, J. J. Bock, A. Boscaleri, F. R. Bouchet, A. Bourrachot, P. Camus, F. Couchot, P. deBernardis, J. Delabrouille, F. X. Desert, O. Dore, M. Douspis, L. Dumoulin, X. Dupac, P. Filliatre, K. Ganga, F. Gannaway, B. Gautier, M. Giard, Y. Giraud-Heraud, R. Gispert, L. Guglielmi, J. C. Hamilton, S. Hanany, S. Henrot-Versille, V. V. Hristov, J. Kaplan, G. Lagache, J. M. Lamarre, A. E. Lange, K. Madet, B. Maffei, D. Marrone, S. Masi, J. A. Murphy, F. Naraghi, F. Nati, G. Perrin, M. Piat, J. L. Puget, D. Santos, R. V. Sudiwala, J. C. Vanel, D. Vibert, E. Wakui, and D. Yvon, “Archeops: a high resolution, large sky coverage balloon experiment for mapping CMB anisotropies,” Astropart. Phys. 17, 101–124 (2002).
  10. S. Hanany, P. Ade, A. Balbi, J. Bock, J. Borrill, A. Boscaleri, P. de Bernardis, P. G. Ferreira, V. V. Hristov, A. H. Jaffe, A. E. Lange, A. T. Lee, P. D. Mauskopf, C. B. Netterfield, S. Oh, E. Pascale, B. Rabii, P. L. Richards, G. F. Smoot, R. Stompor, C. D. Winant, and J. H. P. Wu, “MAXIMA-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10′ to 5°,” Astrophys. J. 545, L5–L9 (2000).
  11. P. de Bernardis, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K. Coble, B. P. Crill, G. De Gasperis, P. C. Farese, P. G. Ferreira, K. Ganga, M. Giacometti, E. Hivon, V. V. Hristov, A. Iacoangeli, A. H. Jaffe, A. E. Lange, L. Martinis, S. Masi, P. Mason, P. D. Mauskopf, A. Melchiorri, L. Miglio, T. Montroy, C. B. Netterfield, E. Pascale, F. Piacentini, D. Pogosyan, S. Prunet, S. Rao, G. Romeo, J. E. Ruhl, F. Scaramuzzi, D. Sforna, and N. Vittorio, “A flat universe from high-resolution maps of the cosmic microwave background radiation,” Nature 404, 955–959 (2000).
  12. J. B. Peterson, G. S. Griffin, M. G. Newcomb, D. L. Alvarez, C. M. Cantalupo, D. Morgan, K. W. Miller, K. Ganga, D. Pernic, and M. Thoma, “First results from Viper: detection of small-scale anisotropy at 40 GHz,” Astrophys. J. 532, L83–L86 (2000).
  13. L. Page, “The MAP satellite mission to map the CMB anisotropy,” Rep. astro-ph/0012214 (Los Alamos National Laboratory, Albuquerque, N. Mex., 2000), http://xxx.lanl.gov/abs/astro-ph/0012214.
  14. G. Fargant, D. Dubruel, M. Cornut, J. Riti, T. Passvogel, P. J. De Maagt, M. Anderegg, and J. Tauber, “Very wide band telescope for Planck using optical and radio frequency techniques,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge and P. Jakobsen, eds., Proc. SPIE 4013, 69–79 (2000).
  15. D. J. Schroeder, Astronomical Optics (Academic, Orlando, Fla., 1987), Chap. 11.
  16. J. E. Nelson and T. S. Mast, “Optical design and instrumentation of the Keck Observatory,” in Advanced Technology Optical Telescopes III, Proc. SPIE 628, 207–212 (1986).
  17. C. Dragone, “A first-order treatment of aberrations in Cassegrainian and Gregorian antennas,” IEEE Trans. Antennas Propag. 30, 331–339 (1982).
  18. C. Dragone, “First-order correction of aberrations in Cassegrainian and Gregorian antennas,” IEEE Trans. Antennas Propag. 31, 764–775 (1983).
  19. Y. Mizuguchi, M. Akagawa, and H. Yokoi, “Offset Gregorian antenna,” Electron. Commun. Jpn. 61-B, 58–66 (1978).
  20. C. Dragone, “Offset multireflector antennas with perfect pattern symmetry and polarization discrimination,” Bell Syst. Tech. J. 57, 2663–2684 (1978).
  21. B. S. Westcott and F. Brickell, “Dual offset reflectors shaped for zero cross-polarisation and prescribed aperture illumination,” J. Phys. D 12, 169–186 (1979).
  22. B. J. Philhour, B. G. Keating, P. A. R. Ade, R. S. Bhatia, J. J. Bock, S. E. Church, J. Glenn, J. R. Hinderks, V. V. Hristov, W. C. Jones, M. Kamionkowski, D. E. Kumar, A. E. Lange, J. R. Leong, D. P. Marrone, B. S. Mason, P. V. Mason, M. M. Shuman, and G. I. Sirbi, “The Polatron: a millimeter-wave cosmic microwave background polarimeter for the OVRO 5.5 m telescope,” Rep. astro-ph/0106543 (Los Alamos National Laboratory, Albuquerque, N. Mex., 2001), http://xxx.lanl.gov/abs/astro-ph/0106543.
  23. M. M. Hedman, D. Barkats, J. O. Gundersen, S. T. Staggs, and B. Winstein, “A limit on the polarized anisotropy of the cosmic microwave background at subdegree angular scales,” Astrophys. J. 548, L111–L114 (2001).
  24. See URL http://www.physics.umn.edu/cosmology/maxipol/.
  25. B. G. Keating, C. W. O’Dell, A. de Oliveira-Costa, S. Klawikowski, N. Stebor, L. Piccirillo, M. Tegmark, and P. T. Timbie, “A limit on the large angular scale polarization of the cosmic microwave background,” Rep. astro-ph/0107013 (Los Alamos National Laboratory, Albuquerque, N. Mex., 2001), http://xxx.lanl.gov/abs/astro-ph/0107013.
  26. See URL http://cmb.physics.wisc.edu/compass.html.
  27. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1990), p. 336.
  28. The tilt is about an axis perpendicular to the plane of the optical axis.
  29. Our optimization was performed with the CodeV optimization routine, with our own optimization criteria intended to maximize DLFOV.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited