OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 22 — Aug. 1, 2002
  • pp: 4712–4721

Multiple-fiber probe design for fluorescence spectroscopy in tissue

T. Joshua Pfefer, Kevin T. Schomacker, Marwood N. Ediger, and Norman S. Nishioka  »View Author Affiliations


Applied Optics, Vol. 41, Issue 22, pp. 4712-4721 (2002)
http://dx.doi.org/10.1364/AO.41.004712


View Full Text Article

Enhanced HTML    Acrobat PDF (415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fiber-optic probe is an essential component of many quantitative fluorescence spectroscopy systems, enabling delivery of excitation light and collection of remitted fluorescence in a wide variety of clinical and laboratory situations. However, there is little information available on the role of illumination-collection geometry to guide the design of these components. Therefore we used a Monte Carlo model to investigate the effect of multifiber probe design parameters—numerical aperture, fiber diameter, source-collection fiber separation distance, and fiber-tissue spacer thickness—on light propagation and the origin of detected fluorescence. An excitation wavelength of 400 nm and an emission wavelength of 630 nm were simulated. Noteworthy effects included an increase in axial selectivity with decreasing fiber size and a transition with increasing fiber-tissue spacer size from a subsurface peak in fluorophore sensitivity to a nearly monotonic decrease typical of single-fiber probes. We provide theoretical evidence that probe design strongly affects tissue interrogation. Therefore application-specific customization of probe design may lead to improvements in the efficacy of fluorescence-based diagnostic devices.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

History
Original Manuscript: February 5, 2002
Revised Manuscript: April 3, 2002
Published: August 1, 2002

Citation
T. Joshua Pfefer, Kevin T. Schomacker, Marwood N. Ediger, and Norman S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-22-4712


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996). [CrossRef] [PubMed]
  2. I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374–382 (2002). [CrossRef] [PubMed]
  3. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992). [CrossRef] [PubMed]
  4. T. Vo-Dinh, M. Panjehpour, B. Overholt, C. Farris, F. Buckley, “Laser-induced differential fluorescence for cancer diagnosis without biopsy,” Appl. Spectrosc. 51, 58–63 (1997). [CrossRef]
  5. M. Zellweger, P. Grosjean, D. Goujon, P. Monnier, H. van den Bergh, G. Wagnieres, “In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers,” J. Biomed. Opt. 6, 41–51 (2001). [CrossRef] [PubMed]
  6. M. Brewer, U. Utzinger, W. Satterfield, L. Hill, D. Gershenson, R. Bast, J. T. Wharton, R. Richards-Kortum, M. Follen, “Biomarker modulation in a nonhuman rhesus primate model for ovarian cancer chemoprevention,” Cancer Epidemiol. Biomarkers Prev. 10, 889–893 (2001). [PubMed]
  7. H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Spectroscopic and microscopic characteristics of human skin autofluorescence emission,” Photochem. Photobiol. 61, 639–645 (1995). [CrossRef] [PubMed]
  8. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989). [CrossRef] [PubMed]
  9. R. Richards-Kortum, A. Mehta, G. Hayes, R. Cothren, T. Kolubayev, C. Kittrell, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Spectral diagnosis of atherosclerosis using an optical fiber laser catheter,” Am. Heart J. 118, 381–391 (1989). [CrossRef] [PubMed]
  10. R. DaCosta, B. Wilson, N. Marcon, “Light-induced fluorescence endoscopy of the gastrointestinal tract,” Gastrointest. Endsoc. Clin. N. Am. 10, 37–69 (2000).
  11. R. Richards-Kortum, “Fluorescence spectroscopy of turbid media,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995). [CrossRef]
  12. T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Effect of optical fiber probe design on fluorescent light propagation in tissue,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 410–416 (2001). [CrossRef]
  13. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001). [CrossRef]
  14. T. H. Foster, E. L. Hull, M. G. Nichols, D. S. Rifkin, N. Schwartz, “Two steady-state methods for localizing a fluorescent inhomogeneity in a turbid medium,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 741–749 (1997). [CrossRef]
  15. E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 (1998). [CrossRef]
  16. D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 269–283 (2001). [CrossRef]
  17. L. Quan, N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002). [CrossRef]
  18. H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, “Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation,” J. Photochem. Photobiol. B 38, 234–240 (1997). [CrossRef] [PubMed]
  19. G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996). [CrossRef] [PubMed]
  20. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gelebart, “Influence of the emission reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998). [CrossRef]
  21. R. S. DaCosta, L. D. Lilge, J. Kost, M. Cirroco, S. Hassaram, N. Marcon, B. C. Wilson, “Confocal fluorescence microscopy, microspectrofluorimetry, and modeling studies of laser-induced fluorescence endoscopy (LIFE) of human colon tissue,” in Laser-Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 98–107 (1997). [CrossRef]
  22. A. F. Gmitro, F. W. Cutruzzola, M. L. Stetz, L. I. Deckelbaum, “Measurement depth of laser-induced fluorescence with application to laser angioplasty,” Appl. Opt. 27, 1844–1849 (1988). [CrossRef] [PubMed]
  23. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997). [CrossRef] [PubMed]
  24. J. Wu, M. Feld, R. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  25. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998). [CrossRef]
  26. A. Jakobsson, G. Nilsson, “Prediction of sampling depth and photon pathlength in laser Doppler flowmetry,” Med. Biol. Eng. Comput. 31, 301–307 (1993). [CrossRef] [PubMed]
  27. E. Sevick-Muraca, C. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994). [CrossRef] [PubMed]
  28. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997). [CrossRef] [PubMed]
  29. L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  30. S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995). [CrossRef]
  31. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996). [CrossRef] [PubMed]
  32. R. Marchesini, E. Pignoli, S. Tomatis, S. Fumagalli, A. E. Sichirollo, S. Di Palma, M. Dal Fante, P. Spinelli, A. C. Croce, G. Bottiroli, “Ex vivo optical properties of human colon tissue,” Lasers Surg. Med. 15, 351–357 (1994). [CrossRef]
  33. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993). [CrossRef] [PubMed]
  34. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73, 636–641 (2001). [CrossRef] [PubMed]
  35. T. J. Pfefer, K. T. Schomacker, N. S. Nishioka, “Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus,” Photochem. Photobiol. 73, 664–668 (2001). [CrossRef] [PubMed]
  36. T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24, 151–166 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited