OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 24 — Aug. 20, 2002
  • pp: 4945–4957

Path-radiance correction by polarization observation of Sun glint glitter for remote measurements of tropospheric greenhouse gases

Tadao Aoki, Teruo Aoki, and Masashi Fukabori  »View Author Affiliations


Applied Optics, Vol. 41, Issue 24, pp. 4945-4957 (2002)
http://dx.doi.org/10.1364/AO.41.004945


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-accuracy remote measurement of greenhouse gases is hampered by contamination of the field of view by the path radiance of solar radiation scattered from clouds and aerosols. A method is proposed for eliminating the effect of path radiance by differentiating two components of polarized light. The polarization of path radiance is measured directly at the wave-number region of strong water-vapor absorption. Using this measurement, we eliminate the components of path radiance involved in other bands, which are used for greenhouse gas measurements, by differentiating two components of the polarized light. It is shown that the effect of path radiance on retrieving the column amount of gases potentially can be reduced to below 0.1%.

© 2002 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: November 7, 2001
Revised Manuscript: May 6, 2002
Published: August 20, 2002

Citation
Tadao Aoki, Teruo Aoki, and Masashi Fukabori, "Path-radiance correction by polarization observation of Sun glint glitter for remote measurements of tropospheric greenhouse gases," Appl. Opt. 41, 4945-4957 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-24-4945


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Shimoda, T. Ogawa, “Development of a FTIR sounder-IMG,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 37–59. [CrossRef]
  2. Ta. Aoki, M. Fukabori, Te. Aoki, “Trace gas remote sounding from near IR sun glint observation with tunable etalons,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, N. A. Scott, eds., Vol. 9 of NATO ASI Series (Springer-Verlag, Berlin, 1993), pp. 309–322. [CrossRef]
  3. J. H. Park, “Atmospheric CO2 monitoring from space,” Appl. Opt. 36, 2701–2712 (1997). [CrossRef] [PubMed]
  4. D. M. O’Brien, P. J. Rayner, “Global observation of the carbon budget. II. CO2 concentrations from differential absorption of reflected sunlight in the 1.61 µm band of CO2,” J. Geophys. Res.107 (to be published).
  5. B. T. Tolton, D. Plouffe, “Sensitivity of radiometric measurements of the atmospheric CO2 column from space,” Appl. Opt. 40, 1305–1313 (2001). [CrossRef]
  6. P. J. Rayner, D. M. O’Brien, “The utility of remote sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001). [CrossRef]
  7. Ta. Aoki, M. Fukabori, Te. Aoki, “Studies of remote sensor for tropospheric trace gas soundings from satellite,” in Sensors, Systems, and Next-Generation Satellite II, H. Fujisada, ed., Proc. SPIE3498, 400–408 (1998). [CrossRef]
  8. Ta. Aoki, M. Fukabori, Te. Aoki, “Optical remote sensing of greenhouse gases in the troposphere,” in Optical Remote Sensing of the Atmosphere and Clouds II, Y. Sasano, J. Wang, T. Hayasaka, eds., Proc. SPIE4150, 138–147 (2000). [CrossRef]
  9. H. Kobayashi, Interferometric Monitor for Greenhouse Gases, IMG Project Tech. Rep. (Central Research Institute of Electric Power Industry, Tokyo, 1999).
  10. H. H. Aumann, M. T. Chahine, “AIRS/AMSU/HSB on EOS-AM-1 instrument performance and product generation,” Earth Observer 11(2), 3–6 (1999).
  11. E. O. Schmidt, R. F. Arduini, B. A. Wielicki, R. S. Stone, S.-C. Tsay, “Considerations for modeling thin cirrus effects via brightness temperature differences,” J. Appl. Meteorol. 34, 447–459 (1995). [CrossRef]
  12. B.-C. Gao, Y. J. Kaufman, W. Han, W. J. Wiscombe, “Correction of thin cirrus path radiance in the 0.4–1.0-µm spectral region using the sensitive 1.375-µm cirrus detecting channel,” J. Geophys. Res. 103, 32,169–32,176 (1998). [CrossRef]
  13. G. N. Plass, G. W. Kattawar, J. A. Guinn, “Isophotes of Sun glint glitter on a wind-ruffled sea,” Appl. Opt. 16, 643–653 (1977). [CrossRef] [PubMed]
  14. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  15. J. A. Guinn, G. N. Plass, G. W. Kattawar, “Sun glint glitter on a wind-ruffled sea: further studies,” Appl. Opt. 18, 842–849 (1979). [CrossRef] [PubMed]
  16. C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Marine Res. 13, 198–225 (1954).
  17. C. Cox, W. Munk, “Some problems in optical oceanography,” J. Marine Res. 14, 63–78 (1955).
  18. D. L. Coffeen, “Polarization and scattering characteristics in the atmosphere of Earth, Venus, and Jupiter,” J. Opt. Soc. Am. 69, 1051–1064 (1979). [CrossRef]
  19. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989). [CrossRef]
  20. K. N. Liou, Radiation and Cloud Processes in the Atmosphere (Oxford U. Press, New York, 1992).
  21. W. G. Egan, W. R. Johnson, V. S. Whitehead, “Terrestrial polarization imagery obtained from the Space Shuttle: characterization and interpretation,” Appl. Opt. 30, 435–442 (1991). [CrossRef] [PubMed]
  22. W. G. Egan, S. Israel, M. Sidran, E. E. Hindman, W. R. Johnson, V. S. Whitehead, “Optical properties of continental haze and cumulus and orographic clouds based on Space Shuttle polarimetric observations,” Appl. Opt. 32, 6841–6852 (1993). [CrossRef] [PubMed]
  23. K. N. Liou, An Introduction to Atmospheric Radiation (Academic, Orlando, Fla., 1980).
  24. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).
  25. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  26. W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).
  27. F. X. Kneizys, F. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” AFGL-TR-83-0187 (Air Force Geophysics Laboratory, Hanscom Field, Mass., 1983).
  28. T. Aoki, “Development of a line-by-line model for the infrared radiative transfer in the earth’s atmosphere,” Papers Meteorol. Geophys. 39, 53–58 (1988). [CrossRef]
  29. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Scroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  30. M. Viollier, D. Tanré, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Bound. Layer Meteorol. 18, 247–267 (1980). [CrossRef]
  31. T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 29, 521–537 (1983). [CrossRef]
  32. W. Livingston, L. Wallace, “Atlas of solar spectrum in the infrared from 1850 to 9000 cm−1 (1.1 to 5.4 µm),” Tech. Rep. 91-001 (National Solar Observatories, Tucson, Arizona, 1991).
  33. Ta. Aoki, M. Fukabori, Te. Aoki, “Asymmetric line shapes of the instrumental function found in two-etalon systems with a finite field of view,” Appl. Opt. 35, 5170–5176 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited