OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 24 — Aug. 20, 2002
  • pp: 5084–5095

Photon-Limited Synthetic-Aperture Imaging for Planet Surface Studies

Robert L. Lucke and Lee J Rickard  »View Author Affiliations


Applied Optics, Vol. 41, Issue 24, pp. 5084-5095 (2002)
http://dx.doi.org/10.1364/AO.41.005084


View Full Text Article

Acrobat PDF (182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The carrier-to-noise ratio that results from phase-sensitive heterodyne detection in a photon-limited synthetic-aperture ladar (SAL) is developed, propagated through synthetic-aperture signal processing, and combined with speckle to give the signal-to-noise ratio of the resultant image. Carrier- and signal-to-noise ratios are defined in such a way as to be familiar to the optical imaging community. Design equations are presented to show that a 10-μm SAL in orbit around Mars can give centimeter-class resolution with reasonable laser power. SAL is harder to implement in the short-wave infrared and is probably not practical at visible wavelengths unless many separate images can be averaged. Some tutorial information on phase-sensitive heterodyne detection and on synthetic-aperture signal processing and image formation is provided.

© 2002 Optical Society of America

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(030.6140) Coherence and statistical optics : Speckle
(110.0110) Imaging systems : Imaging systems
(280.6730) Remote sensing and sensors : Synthetic aperture radar

Citation
Robert L. Lucke and Lee J Rickard, "Photon-Limited Synthetic-Aperture Imaging for Planet Surface Studies," Appl. Opt. 41, 5084-5095 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-24-5084


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, New York, 1991).
  2. C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach (Kluwer Academic, Boston, Mass., 1996).
  3. R. S. Saunders, A. J. Spear, P. C. Allin, R. S. Austin, A. L. Berman, R. C. Chandlee, J. Clark, A. V. DeCharon, E. M. De Jong, D. G. Griffith, J. M. Gunn, S. Hensley, W. T. K. Johnson, C. E. Kirby, K. S. Leung, D. T. Lyons, G. A. Michaels, J. Miller, R. B. Morris, A. D. Morrison, R. G. Piereson, J. F. Scott, S. J. Shaffer, J. P. Slonski, E. R. Stofan, T. W. Thompson, and S. D. Wall, “Magellan Mission Summary,” J. Geophys. Res. 97, 13, 067–13, 090 (1992).
  4. J. W. Goodman, “Synthetic aperture optics,” Progress in Optics, E. Wolf, ed. (North-Holland, London, 1970), Vol. VIII, Sec. 5.4, p. 36.
  5. T. J. Green, S. Marcus, and B. D. Colella, “Synthetic-aperture-radar imaging with a solid-state laser,” Appl. Opt. 34, 6941–6949 (1995).
  6. S. Yoshikado and T. Aruga, “Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10-μm band,” Appl. Opt. 39, 1421–1425 (2000).
  7. M. Bashkansky, R. L. Lucke, E. Funk, and J. Reintjes, “Two-dimensional synthetic aperture imaging in optical domain,” Opt. Lett., submitted for publication.
  8. J. H. Shapiro, B. A. Capron, and R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3313 (1981).
  9. D. Park and J. H. Shapiro, “Performance analysis of optical synthetic aperture radars,” in Laser Radar III, R. J. Becherer, ed.Proc. SPIE 999, 100–116 (1988).
  10. T. G. Kyle, “High resolution laser imaging system,” Appl. Opt. 28, 2651–2656 (1989).
  11. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Thai, A. Kooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer and R. C. Harney, eds., Proc. SPIE 783, 29–40 (1987).
  12. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978), p. 27.
  13. P. J. Winzer and W. R. Leeb, “Coherent lidar at low signal powers: basic considerations on optical heterodyning,” J. Mod. Opt. 45, 1549–1555 (1998).
  14. J. H. Shapiro, “Target-reflectivity theory for coherent laser radars,” Appl. Opt. 21, 3398–3407 (1982).
  15. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  16. J. H. Shapiro and S. S. Wagner, “Phase and amplitude uncertainties in heterodyne detection,” IEEE J. Quantum Electron. QE-20, 803–813 (1984).
  17. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983), Sec. 4.8.
  18. R. S. Saunders, G. H. Pettengill, R. E. Arvidson, W. L. Sjogren, W. T. K. Johnson, and L. Pieri, “The Magellan Venus Radar Mapping mission,” J. Geophys. Res. 95, 8339–8355 (1990).
  19. J. Graf and R. Zurek, “The Mars Reconnaissance Orbiter mission,” presented as paper IAF-01-Q.3.a.07 at the 52nd International Astronautical Congress, Toulouse, France, 1–5 October 2001 (available at the Linda Hall Library of Science, Engineering, and Technology, 5109 Cherry Street, Kansas City, Mo. 64110).
  20. R. L. Lucke, “Fourier-space properties of photon-limited noise in focal plane array data, calculated with the discrete Fourier transform,” J. Opt. Soc. Am. A 18, 777–790 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited