OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 24 — Aug. 20, 2002
  • pp: 5142–5147

Variable pressure infrared diode laser spectroscopy: a new method for trace-gas monitoring

Sébastien Dusanter, Bernard Lemoine, Benjamin Hanoune, and Pascal Devolder  »View Author Affiliations

Applied Optics, Vol. 41, Issue 24, pp. 5142-5147 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method for measuring trace concentrations of atmospheric pollutants by infrared diode laser spectroscopy has been devised. This method relies on the increase of the signal as the pressure inside the cell increases, while the frequency of the diode is stabilized on the line, even if it is unresolved. Performances of this method were tested with N2O and with 1,3-butadiene. As an example of application, we measured the butadiene emitted by car exhausts. Sensitivity and rapidity of this method are equivalent to the usual scanning method in which the whole line is described, but this new method benefits from its simplicity and robustness.

© 2002 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: October 17, 2001
Revised Manuscript: March 21, 2002
Published: August 20, 2002

Sébastien Dusanter, Bernard Lemoine, Benjamin Hanoune, and Pascal Devolder, "Variable pressure infrared diode laser spectroscopy: a new method for trace-gas monitoring," Appl. Opt. 41, 5142-5147 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986). [CrossRef]
  2. A. Fried, J. R. Drummond, B. Henry, J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991). [CrossRef] [PubMed]
  3. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998). [CrossRef]
  4. M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous oxide as a dynamical tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. Geophys. Res. 94, 11589–11598 (1989). [CrossRef]
  5. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994). [CrossRef] [PubMed]
  6. F. G. Wienhold, H. Fisher, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR—a tracer in situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998). [CrossRef]
  7. A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999). [CrossRef]
  8. R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-borne diode-laser absorption spectrometer for measurements of stratospheric trace species,” Appl. Opt. 22, 2655–2664 (1983). [CrossRef] [PubMed]
  9. D. R. Hastie, M. D. Miller, “Balloon-borne tunable diode laser absorption spectrometer for multispecies trace gas measurements in the stratosphere,” Appl. Opt. 24, 3694–3701 (1985). [CrossRef] [PubMed]
  10. A. Fried, B. Henry, B. Wert, S. Sewell, J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67, 317–330 (1998). [CrossRef]
  11. F. Raynaud, B. Lemoine, F. Rohart, “High precision pressure-induced lineshifts measured with a frequency-stabilized diode laser: application to the ν2 and (2ν2 - ν2) bands of NH3,” J. Mol. Spectrosc. 168, 584–592 (1994). [CrossRef]
  12. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  13. G. Guelachvili, K. N. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).
  14. R. Mücke, B. Scheumann, F. Slemr, P. Werle, “Calibration procedures for tunable diode laser spectrometers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, eds., Proc. SPIE2112, 87–98 (1994). [CrossRef]
  15. M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurement of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995). [CrossRef]
  16. P. Werle, B. Jänker, “High-frequency-modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells,” Opt. Eng. 35, 2051–2057 (1996). [CrossRef]
  17. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988). [CrossRef] [PubMed]
  18. B. L. Duffy, P. F. Nelson, Y. Ye, I. A. Weeks, I. E. Galbally, “Emissions of benzene, toluene, xylenes, and 1,3-butadiene from a representative portion of the Australian car fleet,” Atmos. Environ. 32, 2693–2704 (1998). [CrossRef]
  19. Y. M. Kim, S. Harrad, R. M. Harrison, “An improved method for the determination of 1,3-butadiene in non-occupational environments,” Environ. Sci. Technol. 33, 4342–4345 (1999). [CrossRef]
  20. A. Fayt, Université Catholique de Louvain, Belgium (personal communication, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited