OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 24 — Aug. 20, 2002
  • pp: 5179–5184

Photothermal Deflection Studies of GaAs Epitaxial Layers

Nibu A. George, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan  »View Author Affiliations

Applied Optics, Vol. 41, Issue 24, pp. 5179-5184 (2002)

View Full Text Article

Acrobat PDF (109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photothermal beam deflection studies were carried out with GaAs epitaxial double layers grown on semi-insulating GaAs substrates. The impurity densities in thin epitaxial layers were found to influence the effective thermal diffusivity of the entire structure.

© 2002 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(160.6000) Materials : Semiconductor materials
(300.6430) Spectroscopy : Spectroscopy, photothermal
(310.6870) Thin films : Thin films, other properties

Nibu A. George, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, "Photothermal Deflection Studies of GaAs Epitaxial Layers," Appl. Opt. 41, 5179-5184 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. O. Thompson and D. E. Chimenti, eds., Review of Progress in Quantitative Nondestructive Evaluation (Plenum, New York, 1985), Vol. 4B.
  2. C. Wang and A. Mandelis, “Purely thermal-wave photopyroelectric interferometry,” J. Appl. Phys. 85, 8366–8377 (1999).
  3. C. Christofides, F. Diakonos, A. Seas, C. Christou, M. Nestoros, and A. Mandelis, “Two-layer model for photomodulated thermoreflectance of semiconductor wafers,” J. Appl. Phys. 80, 1713–1725 (1996).
  4. R. E. Wagner and A. Mandelis, “Nonlinear photothermal modulated optical reflectance and photocurrent phenomena in crystalline semiconductors: theoretical,” Semicond. Sci. Technol. 11, 289–299 (1996).
  5. A. Mandelis, Ed., Photoacoustic and Thermal Wave Phenomena in Semiconductors (North-Holland, New York, 1987).
  6. J. A. Sell, Photothermal Investigations of Solids and Fluids (Academic, Boston, Mass., 1989).
  7. P. Hess and J. Pelzl, eds., Photoacoustic and Photothermal Phenomena (Springer-Verlag, Berlin, 1988).
  8. A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect, ’” Appl. Phys. Lett. 36, 130–132 (1980).
  9. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
  10. L. C. Aamodt and J. C. Murphy, “Photothermal measurements using a localized excitation source,” J. Appl. Phys. 52, 4903–4914 (1981).
  11. K. R. Grice, L. J. Inglehart, L. O. Favro, P. K. Kuo, and R. L. Thomas, “Thermal wave imaging of closed cracks in opaque solids,” J. Appl. Phys. 54, 6245–6255 (1983).
  12. P. K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D. S. Kim, S. Zhang, L. J. Inglehart, D. Fournier, A. C. Boccara, and N. Yacoubi, “Mirage effect measurement of thermal diffusivity. I. Experimental,” Can. J. Phys. 64, 1165–1167 (1986).
  13. M. Bertolotti, R. L. Voti, G. Liakhou, and C. Sibilia, “On the photodeflection method applied to low thermal-diffusivity measurements,” Rev. Sci. Instrum. 64, 1576–1583 (1993).
  14. D. Bicanic, ed., Proceedings of Seventh International Topical Meeting on Photoacoustic and Photothermal Phenomena (Springer, Berlin, Germany, 1992).
  15. M. Bertolotti, G. L. Liakhou, R. L. Voti, S. Paolini, and C. Sibilia, “Analysis of the photothermal deflection technique in the surface reflection scheme: theory and experiment,” J. Appl. Phys. 83, 966–982 (1998).
  16. A. Mandelis and B. S. H. Royce, “Fundamental-mode laser-beam propagation in optically inhomogeneous electrochemical media with chemical species concentration gradients,” Appl. Opt. 23, 2892–2901 (1984).
  17. A. Salazar and A. S. Lavega, “Thermal-diffusivity measurements using linear relations from photothermal wave experiments,” Rev. Sci. Instrum. 65, 2896–2900 (1994).
  18. A. Salazar, A. S. Lavega, and J. Fernandez, “Thermal-diffusivity measurements in solids by the mirage technique—experimental results,” J. Appl. Phys. 69, 1216–1223 (1991).
  19. S. E. Bialkowski, Photothermal Spectroscopy Method for Chemical Analysis (Wiley, New York, 1996).
  20. G. Chen, C. L. Tien, X. Wu, and J. S. Smith, “Thermal-diffusivity measurement of GaAs/AlGaAs thin-film structures,” J. Heat. Transfer 116, 325–331 (1994).
  21. M. E. Levinshtein, S. L. Rumyantsev, and M. Shur, eds., Handbook Series on Semiconductor Parameters (World Scientific, London, 1996).
  22. S. Adachi, Physical Properties of III–V Semiconductor Compounds (Wiley, New York, 1992).
  23. A. Dargys and J. Kundroats, Handbook on Physical Properties of Ge, Si, GaAs, and InP (Science and Encyclopedia Publishers, Vilnius, Lithuania, 1994).
  24. M. Soltanolkotabi, G. L. Bennis, and R. Gupta, “Temperature dependence of the thermal diffusivity of GaAs in the 100–305 K range measured by the pulsed photothermal displacement technique,” J. Appl. Phys. 85, 794–798 (1999).
  25. C. M. Bhandari and D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).
  26. A. C. Willardson and C. Beer, eds., Semiconductors and Semimetals (Academic, New York, 1988).
  27. D. Fournier, C. Boccara, A. Skumanich, and N. M. Amer, “Photothermal investigation of transport in semiconductors: theory and experiment,” J. Appl. Phys. 59, 787–795 (1986).
  28. Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett. 74, 3005–3007 (1999).
  29. G. Chen, “Phonon wave heat conduction in thin films and superlattices,” J. Heat Transfer 121, 945–953 (1999).
  30. T. F. Zeng and G. Chen, “Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation,” J. Heat Transfer 123, 340–347 (2001).
  31. M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, “Phonon-boundary scattering in thin silicon layers,” Appl. Phys. Lett. 71, 1798–1800 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited