OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 25 — Sep. 1, 2002
  • pp: 5223–5229

Volume grating couplers: polarization and loss effects

Ricardo A. Villalaz, Elias N. Glytsis, and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 41, Issue 25, pp. 5223-5229 (2002)
http://dx.doi.org/10.1364/AO.41.005223


View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the polarization-dependent performance and the loss performance of volume grating couplers using a leaky-mode approach in conjunction with rigorous coupled-wave analysis for two configurations: the volume grating in the cover layer and the volume grating in the waveguide. The angular dependence of TE and TM polarization coupling efficiency is studied, and designs for polarization-dependent and polarization-independent couplers are presented for both configurations. Polarization-dependent couplers are obtained with an outcoupling angle close to normal. Polarization-independent couplers are obtained with outcoupling angles away from normal, 46.7 deg in the case of a volume grating in the cover layer and 54.4 deg in the case of a volume grating in the waveguide. The effect of loss on coupler performance is also analyzed. It is found that, for cases of practical importance, the effect of lossy coupler materials is small. The estimated loss for a commercially available material is 5 dB/cm. For TE-polarized light and the volume grating in the waveguide, a loss of this magnitude reduces the coupling efficiency by less than 3%, whereas in the case of the volume grating in the cover layer, it reduces the coupling efficiency by less than 0.3%.

© 2002 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(090.7330) Holography : Volume gratings
(130.0130) Integrated optics : Integrated optics
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices

History
Original Manuscript: February 22, 2002
Revised Manuscript: May 21, 2002
Published: September 1, 2002

Citation
Ricardo A. Villalaz, Elias N. Glytsis, and Thomas K. Gaylord, "Volume grating couplers: polarization and loss effects," Appl. Opt. 41, 5223-5229 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-25-5223


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  2. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  3. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–739 (2000). [CrossRef]
  4. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Pickor, M. K. Hibbs-Brenner, J. Bristow, Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000). [CrossRef]
  5. H. Kogelnik, T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970). [CrossRef]
  6. W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15, 725–727 (1990). [CrossRef] [PubMed]
  7. Q. Huang, P. R. Ashley, “Holographic Bragg grating input–output couplers for polymer waveguides at an 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997). [CrossRef] [PubMed]
  8. M. L. Jones, R. P. Kenan, C. M. Verber, “Rectangular characteristic gratings for waveguide input and output coupling,” Appl. Opt. 34, 4149–4158 (1995). [CrossRef] [PubMed]
  9. V. Weiss, I. Finkelstein, E. Millul, S. Ruschin, “Coupling and waveguiding in photopolymers,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communications, W. F. Frank, ed., Proc. SPIE3135, 136–143 (1997). [CrossRef]
  10. J. H. Harris, R. K. Winn, D. G. Dalgoutte, “Theory and design of periodic couplers,” Appl. Opt. 11, 2234–2241 (1972). [CrossRef] [PubMed]
  11. R. Ulrich, “Efficiency of optical-grating couplers,” J. Opt. Soc. Am. 63, 1419–1431 (1973). [CrossRef]
  12. A. Wuthrich, W. Lukosz, “Holography with guided optical waves: II. Theory of the diffraction efficiencies,” Appl. Phys. 22, 161–170 (1980). [CrossRef]
  13. S. T. Peng, T. Tamir, H. L. Bertoni, “Leaky-wave analysis of optical periodic couplers,” Electron Lett. 9, 150–152 (1973). [CrossRef]
  14. S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 23, 123–133 (1975). [CrossRef]
  15. K. Ogawa, W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973). [CrossRef] [PubMed]
  16. W. Y. Wang, T. J. Dilaura, “Bragg effect waveguide coupler analysis,” Appl. Opt. 16, 3230–3236 (1977). [CrossRef] [PubMed]
  17. W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Mod. Opt. 38, 363–377 (1991). [CrossRef]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  19. L. Solymar, “Power conservation theorem for 2-dimensional volume holograms,” Electron. Lett. 12, 606–607 (1976). [CrossRef]
  20. L. Solymar, “A general two-dimensional theory for volume holograms,” Appl. Phys. Lett. 31, 820–822 (1977). [CrossRef]
  21. K. Matsumoto, K. Rokushima, J. Yamakita, “Three-dimensional rigorous analysis of dielectric grating waveguides for general cases of oblique propagation,” J. Opt. Soc. Am. A 10, 269–276 (1993). [CrossRef]
  22. R. K. Kostuk, M. Kato, Y. T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990). [CrossRef] [PubMed]
  23. F. Lin, E. M. Strzelecki, T. Jannson, “Optical multiplanar VLSI interconnects based on multiplexed waveguide holograms,” Appl. Opt. 29, 1126–1133 (1990). [CrossRef] [PubMed]
  24. F. Lin, E. M. Strzelecki, C. Nguyen, T. Jannson, “Highly parallel single-mode multiplanar holographic interconnects,” Opt. Lett. 16, 183–185 (1991). [PubMed]
  25. M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, “Large fanout optical interconnects using thick holographic gratings and substrate wave propagation,” Appl. Opt. 31, 236–249 (1992). [CrossRef] [PubMed]
  26. J. H. Yeh, R. K. Kostuk, “Substrate-mode holograms used in optical interconnects: design issues,” Appl. Opt. 34, 2993–2998 (1995). [CrossRef]
  27. C. C. Zhou, S. Sutton, R. T. Chen, B. M. Davies, “Surface-normal 4 × 4 nonblocking wavelength-selective optical crossbar interconnect using polymer-based volume holograms and substrate-guided waves,” IEEE Photon. Technol. Lett. 10, 1581–1583 (1998). [CrossRef]
  28. R. K. Kostuk, G. T. Sincerbox, “Polarization sensitivity of noise gratings recorded in silver halide volume holograms,” Appl. Opt. 27, 2993–2998 (1988). [CrossRef] [PubMed]
  29. R. T Chen, S. Tang, M. M. Li, D. Gerald, S. Natarajan, “1-to-12 surface normal three-dimensional optical interconnects,” Appl. Phys. Lett. 63, 1883–1885 (1993). [CrossRef]
  30. J. H. Yeh, R. K. Kostuk, “Free-space holographic optical interconnects for board-to-board and chip-to-chip interconnections,” Opt. Lett. 21, 1274–1276 (1996). [CrossRef] [PubMed]
  31. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278–2287 (1998). [CrossRef]
  32. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999). [CrossRef]
  33. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1231 (2000). [CrossRef]
  34. L. D. Dickson, R. D. Rallison, B. H. Yung, “Holographic polarization-separation elements,” Appl. Opt. 33, 5378–5385 (1994). [CrossRef] [PubMed]
  35. J. T. Chang, D. C. Su, Y. T. Huang, “A four channel polarization and wavelength separation element using substrate-mode stacked holograms,” Appl. Phys. Lett. 68, 3537–3539 (1996). [CrossRef]
  36. M. Kato, H. Ito, T. Yamamoto, F. Yamagishi, T. Nakagami, “Multichannel optical switch that uses holograms,” Opt. Lett. 17, 769–771 (1992). [CrossRef] [PubMed]
  37. R. K. Kostuk, T. J. Kim, G. Campbell, C. W. Han, “Diffractive-optic polarization-sensing element for magneto-optic storage heads,” Opt. Lett. 19, 1257–1259 (1994). [CrossRef] [PubMed]
  38. Y. T. Huang, “Polarization-selective volume holograms: general design,” Appl. Opt. 33, 2115–2120 (1994). [CrossRef] [PubMed]
  39. J. J. Butler, M. A. Rodriguez, M. S. Malcuit, T. W. Stone, “Polarization-sensitive holograms formed using DMP—128 photopolymer,” Opt. Commun. 155, 23–27 (1998). [CrossRef]
  40. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  41. M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 123–157. [CrossRef]
  42. matlab, version 5.3, Matlab, Inc., 1112 NC Highway 49 South, Asheboro, N.C. 27205 (2000).
  43. M. L. Jones, “Design of normal-incidence waveguide-inbedded phase gratings for optical interconnects in multi-chip modules,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited