OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 25 — Sep. 1, 2002
  • pp: 5256–5262

Estimation of longitudinal resolution in optical coherence imaging

Ceyhun Akcay, Pascale Parrein, and Jannick P. Rolland  »View Author Affiliations


Applied Optics, Vol. 41, Issue 25, pp. 5256-5262 (2002)
http://dx.doi.org/10.1364/AO.41.005256


View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectral shape of a source is of prime importance in optical coherence imaging because it determines several aspects of image quality, especially longitudinal resolution. Wide spectral bandwidth, which provides short coherence length, is sought to obtain high-resolution imaging. To estimate longitudinal resolution, the spectral shape of a source is usually assumed to be Gaussian, although the spectra of real sources are typically non-Gaussian. We discuss the limit of this assumption regarding the estimation of longitudinal resolution. To this end, we also investigate how coherence length is related to longitudinal resolution through the evaluation of different definitions of the coherence length. To demonstrate our purpose, the coherence length for several theoretical and real spectral shapes of sources having the same spectral bandwidth and central wavelength is computed. The reliability of coherence length computations toward the estimation of longitudinal resolution is discussed.

© 2002 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(110.4500) Imaging systems : Optical coherence tomography
(350.5730) Other areas of optics : Resolution

History
Original Manuscript: October 22, 2001
Revised Manuscript: February 20, 2002
Published: September 1, 2002

Citation
Ceyhun Akcay, Pascale Parrein, and Jannick P. Rolland, "Estimation of longitudinal resolution in optical coherence imaging," Appl. Opt. 41, 5256-5262 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-25-5256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  3. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996). [CrossRef] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996). [CrossRef]
  5. J. K. Barton, A. J. Welch, J. A. Izatt, “Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography,” Opt. Express 3, 251–256 (1998); http://www.opticsexpress.org . [CrossRef] [PubMed]
  6. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chaps. 5 and 7.
  7. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), Chap. 8.
  8. R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905–1912 (1999).
  9. C. K. Hitzenberger, A. Baumgartner, W. Drexler, A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999). [CrossRef] [PubMed]
  10. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995). [CrossRef] [PubMed]
  11. R. E. Ziemer, W. H. Tranter, Principles of Communications (Wiley, New York, 1995), Chap. 2.
  12. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, New York, 1995), Chap. 4. [CrossRef]
  13. Y. Zhang, M. Sato, N. Tanno, “Numerical investigations of optimal synthesis of several low coherence source for resolution improvement,” Opt. Commun. 192, 183–192 (2001). [CrossRef]
  14. Y. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6575 (1995). [CrossRef] [PubMed]
  15. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1486–1488 (1999).
  16. S. R. Chinn, E. A. Swanson, “Blindness limitations in optical coherence domain reflectrometry,” Electron. Lett. 29, 2025–2027 (1993). [CrossRef]
  17. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998). [CrossRef] [PubMed]
  18. M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited