OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 25 — Sep. 1, 2002
  • pp: 5367–5375

Digital in-line holography of microspheres

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer  »View Author Affiliations

Applied Optics, Vol. 41, Issue 25, pp. 5367-5375 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (2561 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have used digital in-line holography (DIH) with numerical reconstruction to image micrometer-sized latex spheres as well as ferrimagnetic beads suspended in gelatin. We have examined in detail theoretically and experimentally the conditions necessary to achieve submicrometer resolution of holographic reconstructions. We found that both transparent and opaque particles could be imaged with a resolution that was limited only by the wavelength of the light used. Simple inspection of intensity profiles through a particle allowed an estimate to be made of the particle’s three position coordinates within an accuracy of a few hundred nanometers. When the derivative of a second-order polynomial fitted to the intensity profiles was taken, the X, Y, Z position coordinates of particles could be determined within ±50 nm. More-accurate positional resolution should be possible with the help of more-advanced computer averaging techniques. Because a single hologram can give information about a large collection of distributed particles, DIH offers the prospect of a powerful new tool for three-dimensional tracking of particles.

© 2002 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.2000) Image processing : Digital image processing
(180.6900) Microscopy : Three-dimensional microscopy

Original Manuscript: November 23, 2001
Revised Manuscript: May 15, 2002
Published: September 1, 2002

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Kreuzer, “Low energy electron point source microscopy,” Micron 26, 503–509 (1995). [CrossRef]
  2. H. Schmid, H.-W. Fink, H. J. Kreuzer, “In-line holography using low-energy electrons and photons: applications for manipulation on a nanometer scale,” J. Vac. Sci. Technol. B 13, 2428–2431 (1995). [CrossRef]
  3. H. J. Kreuzer, H.-W. Fink, H. Schmid, S. Bonev, “Holography of holes, with electrons and photons,” J. Microsc. 178, 191–197 (1995). [CrossRef]
  4. H. J. Kreuzer, R. A. Pawlitzek, “Fast implementation of in-line holography for high resolution shape measurement,” in Simulation and Experiment in Laser Metrology, Proceedings of the International Symposium on Laser Applications in Precision Measurements, Z. Füzessy, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1996).
  5. H. J. Kreuzer, R. A. Pawlitzek, “Numerical reconstruction for in-line holography under glancing incidence,” in Fringe ’97: Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, W. Jüptner, W. Osten, eds. (Akademie-Verlag, Berlin, 1997).
  6. H. J. Kreuzer, N. Pomerleau, K. Blagrave, M. H. Jericho, “Digital in-line holography with numerical reconstruction,” in Interferometry ’99: Techniques and Technologies, M. Kujawinska, M. Takeda, eds., Proc. SPIE3744, 65–74 (1999). [CrossRef]
  7. W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 25, 11,301–11,305 (2001). [CrossRef]
  8. H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, W.-B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10,729–10,741 (2001). [CrossRef]
  9. R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000). [CrossRef]
  10. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source electron microscope,” Ultramicroscopy 45, 381–403 (1992). [CrossRef]
  11. H. J. Kreuzer, R. A. Pawlitzek, leeps, Version 1.2, software package for the simulation and reconstruction of low-energy electron point source images and other holograms (1993–1998).
  12. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. R. Soc. London Ser. A 197, 454–487 (1949). [CrossRef]
  13. J. J. Barton, “Photoelectron holography,” Phys. Rev. Lett. 61, 1356–1359 (1988). [CrossRef] [PubMed]
  14. K. Heinz, U. Starke, J. Bernardt, “Surface holography with LEED electrons,” Prog. Surf. Sci. 64, 163–178 (2000). [CrossRef]
  15. H.-W. Fink, H. Schmid, H. J. Kreuzer, “State of the art of low-energy electron holography,” in Electron Holography, A. Tonomura, L. F. Allard, D. C. Pozzi, D. C. Joy, Y. A. Ono, eds. (Elsevier, Amsterdam, The Netherlands, 1995).
  16. A. Gölzhäuser, B. Völkel, B. Jäger, M. Zharnikov, H. J. Kreuzer, M. Grunze, “Holographic imaging of macromolecules,” J. Vac. Sci. Technol. A 16, 3025–3028 (1998). [CrossRef]
  17. J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67, 3106–3109 (1991). [CrossRef] [PubMed]
  18. J. B. DeVelis, G. Parrent, B. J. Thompson, “Image reconstruction with Fraunhofer holograms,” J. Opt. Soc. Am. 56, 423–427 (1966). [CrossRef]
  19. B. Fabry, G. N. Maksym, J. P. Butler, M. Gloganev, D. Navajas, J. J. Friedberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited