OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 25 — Sep. 1, 2002
  • pp: 5427–5437

Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data

Yong Xu, Xuejun Gu, Taufiquar Khan, and Huabei Jiang  »View Author Affiliations


Applied Optics, Vol. 41, Issue 25, pp. 5427-5437 (2002)
http://dx.doi.org/10.1364/AO.41.005427


View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a carefully designed phantom experimental study aimed to provide solid evidence that both absorption and scattering images of heterogeneous scattering media can be reconstructed independently from dc data. We also study the important absorption–scattering cross-talk issue. In this regard, we develop a simple normalizing scheme that is incorporated into our nonlinear finite-element-based reconstruction algorithm. Our results from the controlled phantom experiments show that the cross talk of an absorption object appearing in scattering images can be eliminated and that the cross talk of a scattering object appearing in absorption images can be reduced considerably. In addition, these carefully designed phantom experiments clearly suggest that both absorption and scattering images can be simultaneously recovered and quantitatively separated in highly scattering media by use of dc measurements. Finally, we discuss our results in light of recent theoretical findings on nonuniqueness for dc image reconstruction.

© 2002 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3830) Medical optics and biotechnology : Mammography
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: December 14, 2001
Revised Manuscript: May 9, 2002
Published: September 1, 2002

Citation
Yong Xu, Xuejun Gu, Taufiquar Khan, and Huabei Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Appl. Opt. 41, 5427-5437 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-25-5427


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995). [CrossRef]
  2. S. Colak, M. van der Mark, G. t’ Hooft, J. Hoogenraad, E. van der Linden, F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999). [CrossRef]
  3. V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000). [CrossRef] [PubMed]
  4. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822–824 (2001). [CrossRef]
  5. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001). [CrossRef] [PubMed]
  6. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 60–66 (2001).
  7. H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002). [CrossRef] [PubMed]
  8. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef] [PubMed]
  9. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995). [CrossRef] [PubMed]
  10. W. Cai, S. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38, 4237–4246 (1999). [CrossRef]
  11. J. Hebden, F. Schmidt, M. Fry, M. Schweiger, E. Hillman, D. Delpy, S. Arridge, “Simultaneous reconstruction of absorption and scattering imaging by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999). [CrossRef]
  12. J. Zhang, H. L. Graber, P. C. Kou, R. Aronson, S. S. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical source,” IEEE Trans. Med. Imaging 16, 68–77 (1997). [CrossRef]
  13. H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using dc data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996). [CrossRef] [PubMed]
  14. B. Chance, Q. Luo, S. Nioka, D. Alsop, J. Detre, “Optical investigations of physiology: a study of biomedical intrinsic and extrinsic contrast,” Phil. Trans. R. Soc. London Ser. B 352, 707–716 (1997). [CrossRef]
  15. A. Siegel, J. Marota, D. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4, 287–298 (1999). [CrossRef] [PubMed]
  16. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997). [CrossRef]
  17. S. Colak, D. Papaioannou, G. t’ Hooft, M. vander Mark, H. Schomberg, J. Paasschens, J. Melissen, N. VanAsten, “Tomographic image reconstruction from optical projections in light diffusing media,” Appl. Opt. 36, 180–213 (1997). [CrossRef] [PubMed]
  18. C. L. Matson, “Deconvolution-based spatial resolution in optical diffusion tomography,” Appl. Opt. 40, 5791–5801 (2001). [CrossRef]
  19. H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998). [CrossRef] [PubMed]
  20. N. Iftimia, H. Jiang, “Quantitative optical image reconstruction of turbid media using dc measurements,” Appl. Opt. 39, 5256–5261 (2000). [CrossRef]
  21. H. Jiang, Y. Xu, N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media,” Opt. Express 7, 204–209 (2000). [CrossRef] [PubMed]
  22. Y. Xu, N. Iftimia, H. Jiang, L. L. Key, M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002). [CrossRef] [PubMed]
  23. Y. Xu, N. Iftimia, H. Jiang, L. Key, M. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001). [CrossRef] [PubMed]
  24. M. Schweiger, S. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999). [CrossRef] [PubMed]
  25. Y. Pei, H. L. Graber, R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in dc optical tomography,” Opt. Express 9, 97–109 (2001). [CrossRef] [PubMed]
  26. S. Arridge, W. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998). [CrossRef]
  27. K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995). [CrossRef] [PubMed]
  28. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997). [CrossRef] [PubMed]
  29. Y. Pei, H. L. Graber, R. L. Barbour, R. Aronson, “Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001). [CrossRef]
  30. H. T. Banks, K. Kunisch, Estimation Techniques for Distributed Parameter Systems (Birkhauser, Boston, 1989). [CrossRef]
  31. H. L. Graber, Y. Pei, R. Barbour, “Imaging of spatiotemporal coincident states by dc optical tomography,” IEEE Trans. Med. Imaging (to be published).
  32. G. Dahlquist, A. Bjorck, Numerical Methods (Prentice-Hall, Englewood Cliffs, N.J., 1974).
  33. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, Berlin, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited