OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 26 — Sep. 10, 2002
  • pp: 5488–5496

Digital three-dimensional image correlation by use of computer-reconstructed integral imaging

Yann Frauel and Bahram Javidi  »View Author Affiliations

Applied Optics, Vol. 41, Issue 26, pp. 5488-5496 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use integral images of a three-dimensional (3D) scene to estimate the longitudinal depth of multiple objects present in the scene. With this information, we digitally reconstruct the objects in three dimensions and compute 3D correlations of input objects. We investigate the use of nonlinear techniques for 3D correlations. We present experimental results for 3D reconstruction and correlation of 3D objects. We demonstrate that it is possible to perform 3D segmentation of 3D objects in a scene. We finally present experiments to demonstrate that the 3D correlation is more discriminant than the two-dimensional correlation.

© 2002 Optical Society of America

OCIS Codes
(100.5010) Image processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing
(110.4190) Imaging systems : Multiple imaging
(110.6880) Imaging systems : Three-dimensional image acquisition

Original Manuscript: January 10, 2002
Revised Manuscript: June 5, 2002
Published: September 10, 2002

Yann Frauel and Bahram Javidi, "Digital three-dimensional image correlation by use of computer-reconstructed integral imaging," Appl. Opt. 41, 5488-5496 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Javidi, ed., 3D Television, Video, and Digital Technologies (Springer-Verlag, Berlin, 2002).
  2. E. N. Leith, J. Upatniecks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  3. J. Caulfield, Handbook of Optical Holography (Academic, London, 1979).
  4. G. Lippmann, “La photographic intégrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  5. F. Okano, J. Arai, H. Hoshino, I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999). [CrossRef]
  6. S. Nakajima, K. Masamune, I. Sakuma, T. Dohi, “Three-dimensional display system for medical imaging with computer-generated integral photography,” in Stereoscopic Displays and Virtual Reality Systems VII, J. O. Merritt, S. A. Benton, A. J. Woods, M. T. Bolas, eds., Proc. SPIE3957, 60–67 (2000). [CrossRef]
  7. H. Arimoto, B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001). [CrossRef]
  8. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, New York, 1971).
  9. S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Three-dimensional display system based on computer-generated integral photography,” in Stereoscopic Displays and Virtual Reality Systems VIII, A. J. Woods, M. T. Bolas, J. O. Merritt, S. A. Benton, eds., Proc. SPIE4297, 187–195 (2001). [CrossRef]
  10. J.-H. Park, S.-W. Min, S. Jung, B. Lee, “New stereovision scheme using a camera and a lens array,” in Algorithms and Systems for Optical Information Processing V, B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 73–80 (2001). [CrossRef]
  11. N. Mayer, R. Sand, “Stereoscopic television,” Rundfunktech. Mitt. 13, 123–134 (1969).
  12. T. Motoki, H. Isono, I. Yuyama, “Recent status of 3-dimensional television research,” Proc. IEEE 83, 1009–1021 (1995). [CrossRef]
  13. A. R. L. Travis, “Display of three-dimensional video images,” Proc. IEEE 85, 1817–1832 (1997). [CrossRef]
  14. A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964). [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  16. Ph. Réfrégier, “Filter design for optical pattern recognition: multicriteria optimization approach,” Opt. Lett. 15, 854–856 (1990). [CrossRef] [PubMed]
  17. B. Javidi, ed., Image Recognition Classification (Marcel Dekker, New York, 2002). [CrossRef]
  18. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef] [PubMed]
  19. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  20. Y. Frauel, E. Tajahuerce, M. A. Castro, B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887–3893 (2001). [CrossRef]
  21. Y. Frauel, B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478–1480 (2001). [CrossRef]
  22. A. Pu, R. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997). [CrossRef]
  23. J. Rosen, “Three-dimensional electro-optical correlation,” J. Opt. Soc. Am. A 15, 430–436 (1998). [CrossRef]
  24. J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538–7544 (1998). [CrossRef]
  25. O. Matoba, E. Tajahuerce, B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited