OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 26 — Sep. 10, 2002
  • pp: 5552–5561

512-Channel Vertical-Cavity Surface-Emitting Laser Based Free-Space Optical Link

Marc Châteauneuf, Andrew G. Kirk, David V. Plant, Tsuyoshi Yamamoto, and John D. Ahearn  »View Author Affiliations

Applied Optics, Vol. 41, Issue 26, pp. 5552-5561 (2002)

View Full Text Article

Acrobat PDF (1939 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A vertical-cavity surface-emitting laser based bidirectional free-space optical interconnect has been implemented to interconnect two printed circuit boards. A total of 512 clustered channels with a density of 2844 channels/cm<sup>2</sup> are transmitted over a distance of 83 mm. The optical interconnect is a combination of refractive microlenses and diffractive minilens relays.

© 2002 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4880) Optics in computing : Optomechanics
(220.4830) Optical design and fabrication : Systems design
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(350.3950) Other areas of optics : Micro-optics

Marc Châteauneuf, Andrew G. Kirk, David V. Plant, Tsuyoshi Yamamoto, and John D. Ahearn, "512-Channel Vertical-Cavity Surface-Emitting Laser Based Free-Space Optical Link," Appl. Opt. 41, 5552-5561 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
  2. D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, and A. G. Kirk, “A 256 channel bi-directional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol., 19, 1093–1103 (2001).
  3. A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. S. D’Asaro, “16 × 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 12, 1073–1075 (2000).
  4. D. V. Plant, J. A. Trezza, M. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, T. Maj, A. Ghanem, F. Thomas-Dupuis, P. Seghal, A. G. Kirk, and W. Luo, “A 256 Channel bidirectional optical interconnect using VCSELs and Photodiode on CMOS,” in Optics in Computing 2000, R. A Lessard and T. V. Galsrian, eds., Proc. SPIE 4089, 1046–1054 (2000).
  5. M. Datta and M. Dagenais, “Electroless remetallization of aluminum bond pads on CMOS driver chip for flip-chip attachment to vertical cavity surface emitting lasers (VCSEL’s),” IEEE Transaction on Components Packag. Technol. Part A 22, 299–306 (1999).
  6. Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovski, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, Jr., T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nati, D. K. Lewis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, Y. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection application for the Optoelectronis Technology Consortium,” J. Lightwave Technol. 13, 995–1016 (1995).
  7. D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, C. L. Shieh, S. M. Kuo, S. G. Shook, and B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components, Packag. Manuf. Technol. Part B 19, 532–538 (1996).
  8. G. J. Grimes, J. P. C. Markush, Y. M. Wong, P. J. Anthony, B. Holland, E. G. Priest, C. J. Sherman, S. R. Peck, D. J. Muehlner, C. C. Faudskar, J. S. Nyquist, J. S. Helton, C. A Lepthian, G. L. Sonnier, J. V. Gates, W. K. Honea, and J. R. Bortolini, “Photonic packaging using laser/receiver arrays and flexible optical circuits,” IEEE Trans. Components Packag. Manuf. Technol. Part B, 20, 409–415 (1997).
  9. R. Nagarajan, W. Sha, B. Li, and R. Craig, “Gigabyte/s parallel fiber-optic links based on edge emitting laser diode arrays,” J. Lightwave Technol. 16, 778–787 (1998).
  10. B. Bostica, M. Burzio, F. Delpiano, P. Pellegrino, and L. Pesando, “Ten-channel optical transmitter module for sub-system interconnection operating at λ = 1.3 μm up to 12.5 Gbit/s,” IEEE Trans. Advanced Packag. 22, 442–450 (1999).
  11. H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
  12. T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, and J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface-emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39, 683–689 (2000).
  13. D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, and M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
  14. H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, and M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE 88, 769–779 (2000).
  15. D. T. Neilson and E. Schenfeld, “Plastic modules for free-space optical interconnects,” Appl. Opt. 37, 2944–2952 (1998).
  16. D. T. Neilson and E. Schenfeld, “Free-space optical relay for the interconnection of multimode fibers,” Appl. Opt. 38, 2291–2296 (1999).
  17. C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top”, optics package,” in Optics in Computing 2000, R.A. Lessard and T. V. Galsrian, eds., Proc. SPIE 4089, 1037–1045 (2000).
  18. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Communi. 86, 365–370 (1991).
  19. M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the fast-net smart pixel-based optical interconnection prototype,” Proc. IEEE 88, 819–828 (2000).
  20. V. Baukens, “Scalable micro-optical modules for short-distance photonic-VLSI interconnections; Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, Belgium, 2001).
  21. F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, and A. G. Kirk, “Design and implementation of a four-stage clustered free-space opticalinterconnect,” in Optics in Computing 1998, R. H. Chavel, D. A. Miller, and H. Thienpont, eds., Proc. SPIE 3490, 107–110 (1998).
  22. B. Robertson, “Design of an optical interconnect for photonic backplane applications,” Appl. Opt. 37, 2974–2984 (1998).
  23. D. T. Neilson, “Tolerance of optical interconnections to misalignment,” Appl. Opt. 38, 2282–2290 (1999).
  24. M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tooley, and D. V. Plant, “Electrical, thermal, and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. Soc. A: Pure Appl. Opt. 1, 267–271 (1999).
  25. D. R. Rolston, B. Robertson, H. S. Hinton, and D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
  26. F. Lacroix, M. Châteauneuf, X. Xue, and A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space interconnects,” Appl. Opt. 39, 704–713 (2000).
  27. wB. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, and D. V. Plant, “In situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 36, 9253–9260 (1997).
  28. J. Jahns and W. Däschner, “Precise alignment through thick wafer using an optical copying technique,” Opt. Lett. 17, 390–392 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited