OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 26 — Sep. 10, 2002
  • pp: 5574–5579

Tunable photonic crystal microcavities

David M. Pustai, Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather  »View Author Affiliations


Applied Optics, Vol. 41, Issue 26, pp. 5574-5579 (2002)
http://dx.doi.org/10.1364/AO.41.005574


View Full Text Article

Enhanced HTML    Acrobat PDF (128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for tuning a photonic crystal microcavity by modulating the index of refraction of the lattice sites within and surrounding the microcavity. The index of refraction can be actively modulated after infiltrating anisotropic liquid crystals into a two-dimensional photonic crystal lattice of air cylinders in silicon. We analyze the Q-factors and resonance frequencies of a tunable photonic crystal microcavity by considering various methods of index modulation. These tunable cavities are incorporated in a channel drop filter to demonstrate their enhancement of wavelength division multiplexing photonic crystal applications.

© 2002 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3720) Optical devices : Liquid-crystal devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

History
Original Manuscript: January 31, 2002
Revised Manuscript: May 17, 2002
Published: September 10, 2002

Citation
David M. Pustai, Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-26-5574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A Sharkawy, S. Shi, D. W. Prather, “Multichannel wavelength division multiplexing using photonic crystals,” Appl. Opt. 40, 2247–2252 (2001). [CrossRef]
  2. R. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
  3. A. Chutinan, M. Mochizuki, M. Imada, S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001). [CrossRef]
  4. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett. 12, 1126–1128 (2000). [CrossRef]
  5. K. Busch, S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999). [CrossRef]
  6. S. John, K. Busch, “Photonic bandgap formation and tunability in certain self-organizing systems,” J. Lightwave Technol. 17, 1931–1943 (1999). [CrossRef]
  7. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Rapid Communications: Phys. Rev. B 61, R2398–R2392 (2000).
  8. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999). [CrossRef]
  9. K. Yoshino, K. Nakayama, Y. Kawagishi, S. Tatsuhara, M. Ozaki, A. Zakhidov, “Properties of liquid crystals in photonic crystal, synthetic opal,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 329, 433–441 (1999). [CrossRef]
  10. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001). [CrossRef] [PubMed]
  11. N. Susa, “Transmittance for a two-dimensional photonic-crystal structure consisting of cylinders and liquid crystal,” Jpn. J. Appl. Phys. 39, 3466–3467 (2000). [CrossRef]
  12. S. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998). [CrossRef]
  13. H. A. Haus, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998). [CrossRef] [PubMed]
  14. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical analysis of channel drop tunneling process,” Phys. Rev. B 59, 15882–15892 (1999). [CrossRef]
  15. F. Jian, H. Sai-Ling, “Analysis of higher order channel dropping tunneling processes in photonic crystals,” Chin. Phys. Lett. 17, 737–739 (2000). [CrossRef]
  16. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).
  17. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides.” J. Lightwave Technol. 18, 1554–1564 (2000). [CrossRef]
  18. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (WileyNew York, 1983).
  19. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7852 (1996). [CrossRef]
  20. A. Yariv, Optical Electronics in Modern Communications (Oxford University, New York, 1997).
  21. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Compnt. Phys. 114, 185–200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited