OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5632–5637

Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating

Toni Laurila, Timo Joutsenoja, Rolf Hernberg, and Markku Kuittinen  »View Author Affiliations


Applied Optics, Vol. 41, Issue 27, pp. 5632-5637 (2002)
http://dx.doi.org/10.1364/AO.41.005632


View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable external-cavity diode laser (ECDL) based on a transmission diffraction grating in a Littrow mount has been developed and characterized. A single-transverse-mode diode laser at 650 nm is used in an external-cavity configuration in which the transmission grating is used as a dispersive element to select the single longitudinal mode. The transmission diffraction grating is made with electron-beam lithography. A tunable true single-mode cw output power of >20 mW is obtained from the ECDL. The total wavelength tuning range is 12 nm, and the mode-hop-free continuous tunability is >20 GHz.

© 2002 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(140.2020) Lasers and laser optics : Diode lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.6260) Spectroscopy : Spectroscopy, diode lasers

History
Original Manuscript: February 6, 2002
Revised Manuscript: June 26, 2002
Published: September 20, 2002

Citation
Toni Laurila, Timo Joutsenoja, Rolf Hernberg, and Markku Kuittinen, "Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating," Appl. Opt. 41, 5632-5637 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-27-5632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Wieman, L. Hollberg, “Using diode lasers in atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  2. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  3. H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: spectroscopist’s view,” Appl. Phys. B 70, 567–571 (2000). [CrossRef]
  4. C. Affolderbach, A. Nagel, S. Knappe, D. Jung, R. Wiedenmann, R. Wynands, “Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL),” Appl. Phys. B 70, 407–413 (2000). [CrossRef]
  5. D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997). [CrossRef] [PubMed]
  6. J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001). [CrossRef]
  7. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396–1398 (1998). [CrossRef]
  8. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutschinson, A. Y. Cho, “Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser,” Appl. Opt. 39, 6866–6872 (2000). [CrossRef]
  9. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutschinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001). [CrossRef]
  10. K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992). [CrossRef]
  11. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995). [CrossRef]
  12. A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998). [CrossRef]
  13. A. Andalkar, S. K. Lamoreux, R. B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser,” Rev. Sci. Instrum. 71, 4029–4031 (2000). [CrossRef]
  14. H. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001). [CrossRef]
  15. M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991). [CrossRef]
  16. C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001). [CrossRef]
  17. K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991). [CrossRef] [PubMed]
  18. J. Lazar, O. Cip, P. Jedlicka, “Tunable extended-cavity diode laser stabilized on iodine at λ = 633 nm,” Appl. Opt. 39, 3085–3088 (2000). [CrossRef]
  19. M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000). [CrossRef]
  20. J. Köngäs, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. F. Nabiev, M. Pessa, “High-efficiency GaInP–AlGaInP ridge waveguide single-mode lasers operating at 650 nm,” IEEE Photon. Technol. Lett. 10, 1533–1535 (1998). [CrossRef]
  21. J. Turunen, “Diffraction theory of microrelief gratings,” in Micro Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.
  22. C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE Lightwave Telecommun. Syst. 2, 44–53 (1991).
  23. G. Agrawal, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).
  24. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. of Quantum Electron. 18, 259–264 (1982). [CrossRef]
  25. H. Sun, S. Menhart, A. Adams, “Calculation of spectral linewidth reduction of external-cavity strong-feedback semiconductor lasers,” Appl. Opt. 33, 4771–4775 (1994). [CrossRef] [PubMed]
  26. H. Talvitie, A. Pietiläinen, H. Ludvigsen, E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1–7 (1997). [CrossRef]
  27. D. S. Elliot, R. Rajarshi, S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982). [CrossRef]
  28. K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981). [CrossRef] [PubMed]
  29. J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited