OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5645–5654

Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources

Yusuke Ogura, Nobuhiro Shirai, and Jun Tanida  »View Author Affiliations

Applied Optics, Vol. 41, Issue 27, pp. 5645-5654 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (2564 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical levitation and translation method for a microscopic particle by use of the resultant force induced by multiple light beams is studied. We show dependence of the radiation pressure force on the illuminating distribution by numerical calculation, and we find that the strongest axial force is obtained by a specific spacing period of illuminating beams. Extending the optical manipulation technique by means of vertical-cavity surface-emitting laser (VCSEL) array sources [Appl. Opt. 40, 5430 (2001)], we are the first, to our knowledge, to demonstrate levitation of a particle and its translation while levitated by using a VCSEL array. The vertical position of the target particle can be controlled in a range of a few tens of micrometers with an accuracy of 2 µm or less. The analytical and experimental results suggest that use of multiple beams is an effective method to levitate a particle with low total illumination power. Some issues on the manipulation method that uses multiple beams are discussed.

© 2002 Optical Society of America

OCIS Codes
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.3290) Lasers and laser optics : Laser arrays
(140.7010) Lasers and laser optics : Laser trapping
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(350.4990) Other areas of optics : Particles

Original Manuscript: January 17, 2002
Revised Manuscript: June 11, 2002
Published: September 20, 2002

Yusuke Ogura, Nobuhiro Shirai, and Jun Tanida, "Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources," Appl. Opt. 41, 5645-5654 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Block, “Making light work with optical tweezers,” Nature 360, 493–495 (1992). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987). [CrossRef] [PubMed]
  4. S. C. Kuo, M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993). [CrossRef] [PubMed]
  5. P. Borowicz, J. Hotta, K. Sasaki, H. Masuhara, “Laser-controlled association of poly(N-vinylcarbazole) in organic solvents; radiation pressure effect of a focused near-infrared laser beam,” J. Phys. Chem. B 101, 5900–5904 (1997). [CrossRef]
  6. Z. P. Luo, Y. L. Sun, K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000). [CrossRef]
  7. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26, 863–865 (2001). [CrossRef]
  8. M. M. Burns, J. M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990). [CrossRef] [PubMed]
  9. K. T. Gahagan, G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef] [PubMed]
  10. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001). [CrossRef] [PubMed]
  11. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  12. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998). [CrossRef]
  13. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991). [CrossRef]
  14. Y. Hayasaki, M. Itoh, T. Yatagai, N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999). [CrossRef]
  15. J. Liesener, M. Reicherter, T. Haist, H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000). [CrossRef]
  16. Y. Ogura, K. Kagawa, J. Tanida, “Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources,” Appl. Opt. 40, 5430–5435 (2001). [CrossRef]
  17. R. C. Gauthier, S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B 12, 1680–1686 (1995). [CrossRef]
  18. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 12, 1943–1949 (1998). [CrossRef]
  19. J. Noordmans, P. J. Wit, H. C. van der Mei, H. J. Busscher, “Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber,” J. Adhes. Sci. Technol. 11, 957–970 (1997). [CrossRef]
  20. Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999). [CrossRef] [PubMed]
  21. B. H. Weigl, P. Yager, “Microfluidic diffusion-based separation and detection,” Science 283, 346–347 (1999). [CrossRef]
  22. J. B. Knight, A. Vishwanath, J. P. Brody, R. H. Austin, “Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds,” Phys. Rev. Lett. 80, 3863–3866 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited