OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5660–5667

Effect of Vaporization and Melt Ejection on Laser Machining of Silica Glass Micro-Optical Components

Gavin A. J. Markillie, Howard J. Baker, Francisco J. Villarreal, and Denis R. Hall  »View Author Affiliations


Applied Optics, Vol. 41, Issue 27, pp. 5660-5667 (2002)
http://dx.doi.org/10.1364/AO.41.005660


View Full Text Article

Acrobat PDF (1742 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new regime for silica glass machining for micro-optical fabrication applications, which uses pulsed CO<sub>2</sub> laser radiation in the 2.5–100-μs pulse width region that has been generated by an acousto-optic modulator, is investigated. A filamentary melt ejection process that generates fibers and significant melt displacement limits machining quality below 30-μs pulse width. Ablation and melt ejection thresholds are quantified relative to pulse width, and the region from 30 to 50 μs is identified for low-threshold, smooth machining without melt displacement and ejection effects.

© 2002 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(160.0160) Materials : Materials
(160.6030) Materials : Silica
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication

Citation
Gavin A. J. Markillie, Howard J. Baker, Francisco J. Villarreal, and Denis R. Hall, "Effect of Vaporization and Melt Ejection on Laser Machining of Silica Glass Micro-Optical Components," Appl. Opt. 41, 5660-5667 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-27-5660


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Jacquoire, E. W. Kreutz, and R. Proprawe, “Microstructuring of glass with excimer laser radiation at different processing gas atmospheres for microreaction technology,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, and A. Matsunawa, eds., Proc. SPIE 3888, 272–279 (2000).
  2. P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalev, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
  3. H. Exner, B. Keiper, and P. Meja, “Microstructuring of materials by pulsed laser focusing and projection technique,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, J. J. Dubowski, H. Helvajian, E. W. Kreutz, and K. Sugioka, eds., Proc. SPIE 3618, 340–347 (2000).
  4. H. M. Presby, A. F. Benner, and C. A. Edwards, “Laser micromachining of efficient fiber microlenses,” Appl. Opt. 29, 2692–2695 (1990).
  5. L. Forrest, M. A. O’Key, M. R. Osborne, R. W. Musk, and P. Spicer, “Laser machining of fibre ends,” in Proceedings of IEEE Conference on Electrical Devices for Microwave and Optoelectronic Applications Workshop—EDMO, Leeds University, UK, 25–26 Nov., 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 68–69.
  6. A. Vaidya and J. A. Harrington, “Sculpted optical silica fiber tips for use in Nd:YAG contact tip laser surgery. 1. Fabrication techniques,” Opt. Eng. 31, 1404–1409 (1992).
  7. K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, and A. Ghosh, “Laser fabricated fiber optical taps for interconnects and optical data processing devices,” in Components for Laser Applications V, P. M. Kopera, ed., Proc. SPIE 1365, 60–64 (1991).
  8. H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, and D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” in High Power Lasers in Manufacturing, X. Chen, T. Fujioka, and A. Matsunawa, eds., Proc. SPIE 3888, 625–634 (2000).
  9. H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60, 331–362 (1960).
  10. G. E. Quartz, “Viscosity chart,” http://www.geqonline.com/en/fig14.htm.
  11. M. von Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 3, pp. 41–67.
  12. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermal conductivity of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian, and C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 2, pp. 183–193.
  13. Y. S. Touloukian and E. H. Buyco, “Specific heat of nonmetallic solids,” in Thermophysical Properties of Matter, Y. S. Touloukian and C. Y. Ho, eds. (IFI/Plenum, New York, 1970), Vol. 5, pp. 202–206.
  14. A. D. MacLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26, 1728–1731 (1987).
  15. H. R. Philipp, “Silicon dioxide (SiO2) glass,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, London, 1985), pp. 749–763.
  16. M. von Allmen and A. Blatter, Laser-Beam Interactions with Materials, 2nd ed. (Springer-Verlag, Berlin, 1995), Chap. 5, pp. 115–165.
  17. M. von Allmen, “Laser drilling velocity in metals,” J. Appl. Phys. 47, 5460–5463 (1976).
  18. F. W. Dabby and U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
  19. F. P. Gagliano and U. C. Paek, “Observation of laser-induced explosion of solid materials and correlation with theory,” IEEE J. Quantum Electron. 13, 274–279 (1974).
  20. F. Villarreal, P. R. Murray, Q. Cao, P. A. Field, G. A. J. Markillie, H. J. Baker, and D. R. Hall, “Enhancement of the micromachining capabilities of CO2 planar waveguide lasers,” in Proceedings of the Laser Microfabrication Conference ICALEO ’99, P. Christensen, P. P. Herman, and R. S. Patel, eds. (Laser Institute of America, Orlando, Fla., 1999), Vol. 88, pp. 20–28.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited