OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5678–5690

Application of laser-induced incandescence to the detection of carbon nanotubes and carbon nanofibers

Randy L. Vander Wal, Gordon M. Berger, Thomas M. Ticich, and Premal D. Patel  »View Author Affiliations


Applied Optics, Vol. 41, Issue 27, pp. 5678-5690 (2002)
http://dx.doi.org/10.1364/AO.41.005678


View Full Text Article

Enhanced HTML    Acrobat PDF (1380 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced incandescence applied to a heterogeneous, multielement reacting flow is characterized by temporally resolved emission spectra, time-resolved emission at selected detection wavelengths, and fluence dependence. Two-pulse laser measurements are used to further probe the effects of laser-induced changes on the optical signal. Laser fluences above 0.6 J/cm2 at 1064 nm initiate laser-induced vaporization, yielding a lower incandescence intensity, as found through fluence-dependence measurements. Spectrally derived temperatures show that values of excitation laser fluence greater than this value lead to superheated plasmas with temperatures well above the vaporization point of carbon. The temporal evolution of the emission signal at these fluences is consistent with plasma dissipation processes, not incandescence from solidlike structures. Two-pulse laser experiments reveal that other material changes are produced at fluences below the apparent vaporization threshold, leading to nanostructures with different optical and thermal properties.

© 2002 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(280.2470) Remote sensing and sensors : Flames
(290.5850) Scattering : Scattering, particles
(300.2140) Spectroscopy : Emission
(350.4990) Other areas of optics : Particles

History
Original Manuscript: January 2, 2002
Revised Manuscript: June 18, 2002
Published: September 20, 2002

Citation
Randy L. Vander Wal, Gordon M. Berger, Thomas M. Ticich, and Premal D. Patel, "Application of laser-induced incandescence to the detection of carbon nanotubes and carbon nanofibers," Appl. Opt. 41, 5678-5690 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-27-5678


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. T. Kodas, M. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, New York, 1999).
  2. R. Kamalakaran, M. Terrones, T. Seeger, Ph. Koholer-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis,” Appl. Phys. Lett. 77, 3385–3388 (2000). [CrossRef]
  3. R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization,” Chem. Phys. Lett. 303, 467–474 (1999). [CrossRef]
  4. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.” Chem. Phys. Lett. 313, 91–97 (1999). [CrossRef]
  5. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, “Large-scale and low cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett. 72, 3282–3284 (1998). [CrossRef]
  6. B. C. Satishkumar, A. Govindaraj, R. Sen, C. N. R. Rao, “Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures,” Chem. Phys. Lett. 293, 47–52 (1998). [CrossRef]
  7. R. Sen, A. Govindaraj, C. N. R. Rao, “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett. 267, 276–280 (1997). [CrossRef]
  8. G. G. Tibbets, D. W. Gorkiewicz, R. L. Alig, “A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons,” Carbon 31, 809–814 (1993). [CrossRef]
  9. S. Arepalli, P. Nikolaev, W. Holmes, C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 70, 125–133 (2000). [CrossRef]
  10. A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “Dynamics of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. A 70, 153–160 (2000). [CrossRef]
  11. A. A. Puretzky, D. B. Geohegan, X. Fan, S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000). [CrossRef]
  12. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, New York, 1996).
  13. R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1999). [CrossRef]
  14. P. Roth, A. V. Filipov, “In situ ultrafine particle sized by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996). [CrossRef]
  15. D. A. Greenhalgh, “Planar measurements of fuel vapour, liquid fuel, liquid droplet size and soot,” in Planar Optical Measurement Methods for Gas Turbine Components, NATO Lecture Series 217 (Cranfield University, Cranfield, Bedfordshire, UK, 1999), paper RTO-EN-6, pp. 7/1–7/18.
  16. R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” paper AIAA-99-0640, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).
  17. R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999). [CrossRef]
  18. D. J. Bryce, “Development and application of planar laser techniques for isothermal flow and soot diagnostics,” Ph.D. dissertation (Cranfield University, Cranfield, Bedfordshire, UK, 1996).
  19. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996). [CrossRef]
  20. H. Kosaka, T. Nishigaki, T. Kamimoto, S. Harada, “A study on soot formation and oxidation in an unsteady spray flame via laser induced incandescence and scattering techniques,” SAE tech. paper 952451 (Society of Automotive Engineers, Warrendale, Pa., 1995).
  21. N. P. Tait, D. A. Greenhalgh, “2-D soot field measurements by laser induced incandescence,” in Proceedings of the Optical Methods and Data Processing in Heat Transfer and Fluid Flow (Institution of Mechanical Engineering, London, 1992), pp. 185–194.
  22. Y.-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  23. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and laser inelastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001). [CrossRef]
  24. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000). [CrossRef]
  25. K. T. Walsh, J. Fielding, M. D. Smooke, M. B. Long, “Experimental and computation study of temperature, species and soot in buoyant and non-buoyant coflow laminar diffusion flames,” in The Twenty-Eighth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 2000), pp. 1973–1984.
  26. M. R. DeCroix, W. L. Roberts, “Extinction measurements for an unsteady propane-air counterflow diffusion flame,” in The Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), poster 038.
  27. A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol Sci. 30, 71–87 (1999). [CrossRef]
  28. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be determined using laser-induced incandescence?” Combust. Flame 116, 291–296 (1999). [CrossRef]
  29. R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in AIAA-99-0640, presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, Reston, Va., 1999).
  30. H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in The Twenty-Seventh (International) Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1622. [CrossRef]
  31. K. R. McManus, J. H. Frank, M. G. Allen, W. T. Rawlins, “Characterization of laser-heated soot particles using optical pyrometry,” paper AIAA-98-0159, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, Reston, Va., 1998).
  32. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998). [CrossRef]
  33. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Optical microscopy investigation of soot structure alterations by laser-induced incandescence,” Appl. Phy. B 67, 115–123 (1998). [CrossRef]
  34. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998). [CrossRef]
  35. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997). [CrossRef] [PubMed]
  36. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparision with extinction measurements in laminar, premixed, flat flames,” in The Twenty-Seventh Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395. [CrossRef]
  37. C. S. McEnally, A. M. Schaffer, M. B. Long, L. D. Pfefferle, M. D. Smooke, M. B. Colket, R. J. Hall, “Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame,” in The Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1497–1505.
  38. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996). [CrossRef]
  39. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996). [CrossRef] [PubMed]
  40. P. E. Bengtsson, M. Alden, “Soot visualization strategies using laser-techniques,” Appl. Phys. B 60, 51–59 (1995). [CrossRef]
  41. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995). [CrossRef] [PubMed]
  42. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995). [CrossRef]
  43. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser induced incandescence,” Combust. Flame 97, 384–392 (1994). [CrossRef]
  44. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994). [CrossRef]
  45. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–451 (1994). [CrossRef]
  46. C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in The Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1231–1237.
  47. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984). [CrossRef] [PubMed]
  48. K. Inagaki, S. Takasu, K. Nakakita, “In-cylinder quantitative soot concentration measurement by laser-induced incandescence,” SAE tech. paper 199-01-0508 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  49. H. Zhao, N. Ladommatos, “Optical diagnostics for soot and temperature measurement in Diesel engines,” Prog. Energy Combust. Sci. 24, 221–255 (1998). [CrossRef]
  50. G. Wiltafsky, W. Stolz, J. Kohler, C. Espey, “The quantification of laser-induced incandescence (LII) for planar time-resolved measurements of the soot volume fraction in a combusting Diesel jet,” SAE tech. paper 961200 (Society of Automotive Engineers, Warrendale, Pa., 1996).
  51. J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. Diesel engine using laser-induced incandescence and light scattering,” SAE tech. paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  52. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” in Symposium: Laser Diagnostics for Industrial Processes (Deutsche Bunsengesellschaft für Physikalische Chemie, Heidelberg, 1993), pp. 1619–1625.
  53. J. E. Dec, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence, elastic scattering and flame luminosity,” SAE tech. paper 920115 (Society of Automotive Engineers, Warrendale, Pa., 1992).
  54. J. E. Dec, A. O. Zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE tech. paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  55. D. J. Bryce, N. Ladommatos, Z. Xiao, H. Zhao, “Investigating the effect of oxygenated and aromatic compounds in fuel by comparing laser soot measurements in laminar diffusion flames with Diesel engine emissions.” J. Inst. Energy 72, 150–156 (1999).
  56. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, O. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  57. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996). [CrossRef]
  58. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE tech. paper 390079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  59. J. D. Black, “Laser-induced incandescence measurements of particles in aeroengine exhausts,” in Environmental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J.-P. Wolf, eds., Proc. SPIE3821, 209–215 (1999). [CrossRef]
  60. R. L. Vander Wal, “Using laser-induced incandescence to measure soot/smoke concentrations,” Contractor rep. CR-237-98 (NASA Glenn Research Center, Cleveland, Ohio, 1997).
  61. G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gülder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” J. Heat Transfer 123, 814–818 (2000). [CrossRef]
  62. A. V. Filippov, D. E. Rosner, M. Kumar, “When and how can LII be used to determine soot aggregate size distributions,” presented at the First Joint Meeting of the U.S. Sections of the Combustion Institute, Washington D.C., 14–17 March 1999 (Combustion Institute, Pittsburgh, Pa., 1999).
  63. R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999). [CrossRef]
  64. R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995). [CrossRef]
  65. A. C. Eckbreth, “Effect of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977). [CrossRef]
  66. D. R. Snelling, F. Liu, G. F. Smallwood, O. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, (American Society of Mechanical Engineers, New York, 2000), paper NHTC2000–12132.
  67. M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998). [CrossRef]
  68. B. Mewes, J. M. Seitzman, “Analysis of laser-induced incandescence and novel soot measurement approaches,” paper AIAA-96-0538, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).
  69. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984). [CrossRef] [PubMed]
  70. R. L. Vander Wal, L. J. Hall, “Flame synthesis of Fe catalyzed single walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences,” Chem. Phys. Lett. 349, 178–184 (2001). [CrossRef]
  71. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260, 471–476 (1996). [CrossRef]
  72. N. M. Rodriguez, “A review of catalytically grown carbon nanofibers,” J. Mater. Res. 8, 3233–3250 (1993). [CrossRef]
  73. H. R. Leider, O. H. Krikorian, D. A. Young, “Thermodynamics properties of carbon up to the critical point,” Carbon 11, 555–563 (1973). [CrossRef]
  74. L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  75. Statement based on analytical analysis of the radiative emission decay rate based on an energy balance formalism by P. D. Patel.
  76. A. Bougrine, N. Dupont-Pavlovsky, A. Naji, J. Ghanbaja, J. F. Mareche, D. Billaud, “Influence of high temperature treatments on single-walled carbon nanotubes structure, morphology and surface properties,” Carbon 39, 685–695 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited