OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5691–5701

Modeling The Noise Equivalent Radiance Requirements of Imaging Spectrometers Based On Scientific Applications

Daniel Schläpfer and Michael Schaepman  »View Author Affiliations


Applied Optics, Vol. 41, Issue 27, pp. 5691-5701 (2002)
http://dx.doi.org/10.1364/AO.41.005691


View Full Text Article

Acrobat PDF (291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The derivation of radiometric specifications for imaging spectrometers from the visible to the short-wave infrared part of the spectrum is a task based on the requirements of potential scientific applications. A method for modeling the noise equivalent radiance at-sensor level is proposed. The model starts with surface reflectance signatures, transforms them to at-sensor signatures, and combines signatures of various applications with regard to performance requirements. The wavelength-dependent delta radiances are then derived at predefined radiance levels by use of a model of the sensor performance. The model is applied with regard to the upcoming Airborne Prism Experiment imaging spectrometer system. A combination of various potential application disciplines forms the basis of the experiment. The results help in the definition of radiometric levels for laboratory calibration of the noise equivalent radiance levels, the quantization of the signal, and the spectral range of an instrument to be designed.

© 2002 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1310) Remote sensing and sensors : Atmospheric scattering
(300.6170) Spectroscopy : Spectra
(300.6190) Spectroscopy : Spectrometers

Citation
Daniel Schläpfer and Michael Schaepman, "Modeling The Noise Equivalent Radiance Requirements of Imaging Spectrometers Based On Scientific Applications," Appl. Opt. 41, 5691-5701 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-27-5691


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. I. Itten, M. Schaepman, L. De Vos, L. Hermans, H. Schlaepfer, and F. Droz, “APEX: Airborne Prism Experiment, a new concept for an airborne imaging spectrometer,” in Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition, B. J. Petoskey, ed. (Environmental Research Institute of Michigan International, Ann Arbor, Mich., 1997), Vol. 1, pp. 181–188.
  2. M. Schaepman and S. Dangel, “Solid laboratory calibration of a nonimaging spectroradiometer,” Appl. Opt. 39, 3754–3764 (2000).
  3. D. Schläpfer, M. Schaepman, S. Bojinski, and A. Börner, “Calibration concept for the airborne PRISM Experiment (APEX),” Can. J. Remote Sens. 26, 455–465 (2000).
  4. R. Richter, “Model SENSAT: a tool for evaluating the system performance of optical sensors,” in Propagation Engineering III, L. R. Bissonnette and W. B. Miller eds., Proc. SPIE 1312, 286–297 (1990).
  5. A. Börner, L. Wiest, P. Keller, R. Reulke, R. Richter, M. Schaepman, and D. Schläpfer, “SENSOR: a tool for the simulation of hyperspectral remote sensing systems,” ISPRS J. Photogramm. Remote Sens. 55, 299–312 (2001).
  6. S. Blonski, C. Cao, J. Gasser, R. Ryan, V. Zanoni, and T. Stanley, “Satellite hyperspectral imaging simulation,” in Proceedings of the International Symposium on Spectral Sensing Research (ISSSR) 1999, A. J. Bruzewicz ed. (U.S. Corps of Engineers, Hanover, N.H. 2000), CD-ROM.
  7. R. Richter, and D. Schläpfer, “Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric topographic correction,” Int. J. Remote Sens. 23, 2609–2630 (2002).
  8. G. P. Asner, C. A. Wessman, D. S. Schimel, and S. Archer, “Variability in leaf and litter optical properties: implications for BRDF model inversions using AVHRR, MODIS, and MISR,” Remote Sens. Environ. 63, 243–257 (1998).
  9. M. H. Weiss, H. Chauki, D. Troufleau, and F. Baret, “Coupling canopy functioning and canopy radiative transfer models for remote sensing data assimilation,” Agric. Forest Meteorol. 108(2), 113–128 (2001).
  10. A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: a Moderate Resolution Model for LOWTRAN7, GL-TR-89–0122 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1989).
  11. D. Schläpfer, “MODO: an interface to MODTRAN for the simulation of imaging spectrometry at-sensor signals,” in Proceedings of the Tenth Jet Propulsion Laboratory Airborne Earth Science Workshop, R. Green, ed. (Jet Propulsion Laboratory, Pasadena, Calif., 2001), JPL 02–1, pp. 343–350.
  12. H. J. Kostowski, Reliable Spectroradiometry (Spectroradiometry Consulting, La Plata, Md., 1997), ISBN 0–9657713–0-X, 1997), pp. 276 ff.
  13. M. Schaepman, D. Schläpfer, K. Itten, P. Strobl, W. Mooshuber, A. Müller, W. Debruyn, I. Reusen, and D. Fransaer, “Performance and calibration requirements for APEX,” Final Report ESA/ESTEC Contract 14906/00/NL/DC (Remote Sensing Laboratories, University of Zurich, Zurich, Switzerland, 2001), CD-ROM.
  14. S. Jacquemoud and F. Baret, “PROSPECT: a model of leaf optical properties spectra,” Remote Sens. Environ. 34, 75–91 (1990).
  15. W. Verhoef, “Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model,” Remote Sens. Environ. 16, 125–141 (1984).
  16. G. P. Asner, “Biophysical and biochemical sources of variability in canopy reflectance,” Remote Sens. Environ. 64, 234–253 (1998).
  17. P. Keller, Imaging Spectroscopy of Lake Water Quality Parameters, Vol. 32 of Remote Sensing Series (Remote Sensing Laboratories, University of Zurich, Zürich, Switzerland, 2001).
  18. T. H. Painter, D. A. Roberts, R. O. Green, and J. Dozier, “Improving mixture analysis estimates of snow-covered-area from AVIRIS data,” Remote Sens. Environ. 65, 320–332 (1998).
  19. J. W. Boardman, “Inversion of high spectral resolution data,” in Imaging Spectroscopy of the Terrestrial Environment, G. Vane, ed., Proc. SPIE 1298, 222–233 (1990).
  20. D. Schläpfer, Differential Absorption Methodology for Imaging Spectroscopy of Atmospheric Water Vapor, Vol. 32 of Remote Sensing Series (Remote Sensing Laboratories, University of Zurich, Zurich, Switzerland, 1998).
  21. D. J. Diner, C. J. Brügge, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, P. J. Sellers, J. Clark, J. A. Daniels, E. D. Danielson, V. G. Duval, K. P. Klaasen, G. W. Lilienthal, D. J. Nakamoto, R. J. Pagano, and T. H. Reilly, “MISR: a multiangle imaging spectroradiometer for geophysical and climatological research from EOS,” IEEE Trans. Geosci. Remote Sens. 27, 200–214 (1989).
  22. R. G. Isaacs, W.-C. Wang, R. D. Worsham, and S. Goldenberg, “Multiple scattering LOWTRAN and FASCODE models,” Appl. Opt. 26, 1272–1281 (1987).
  23. SPECTRA: Surface Processes and Ecosystem Changes through Response Analysis, ESA SP-1257(5) Reports for assessment: the five earth explorer core missions (European Space Agency, Paris, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited