OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5702–5712

Building blocks for a two-frequency laser lidar-radar: a preliminary study

Loïc Morvan, Ngoc D. Lai, Daniel Dolfi, Jean-Pierre Huignard, Marc Brunel, Fabien Bretenaker, and Albert Le Floch  »View Author Affiliations


Applied Optics, Vol. 41, Issue 27, pp. 5702-5712 (2002)
http://dx.doi.org/10.1364/AO.41.005702


View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new principle of lidar-radar is theoretically and experimentally investigated. The proposed architecture is based on the use of an rf modulation of the emitted light beam and a direct detection of the backscattered intensity. Use of a radar-processing chain allows one to obtain range and Doppler measurements with the advantages of lidar spatial resolution. We calculate the maximum range of this device, taking into account different possible improvements. In particular, we show that use of a pulsed two-frequency laser and a spatially multimode optical preamplification of the backscattered light leads to calculated ranges larger than 20 km, including the possibility of both range and Doppler measurements. The building blocks of this lidar-radar are tested experimentally: The radar processing of an rf-modulated backscattered cw laser beam is demonstrated at 532 nm, illustrating the Doppler and identification capabilities of the system. In addition, signal-to-noise ratio improvement by optical preamplification is demonstrated at 1.06 µm. Finally, a two-frequency passively Q-switched Nd:YAG laser is developed. This laser then permits two-frequency pulses with tunable pulse duration (from 18 to 240 ns) and beat frequency (from 0 to 2.65 GHz) to be obtained.

© 2002 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3540) Lasers and laser optics : Lasers, Q-switched
(280.5600) Remote sensing and sensors : Radar

History
Original Manuscript: February 27, 2002
Revised Manuscript: May 21, 2002
Published: September 20, 2002

Citation
Loïc Morvan, Ngoc D. Lai, Daniel Dolfi, Jean-Pierre Huignard, Marc Brunel, Fabien Bretenaker, and Albert Le Floch, "Building blocks for a two-frequency laser lidar-radar: a preliminary study," Appl. Opt. 41, 5702-5712 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-27-5702


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).
  2. J. Brandt, T. Steiner, N. Krasutsy, “Ten-kilometer imaging solid-state ladar demonstration,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 264.
  3. M. Skolnik, Radar Handbook, 2nd ed. (MacGraw-Hill, New York, 1990).
  4. C. J. Karlsson, F. Å. A. Olsson, D. Letalick, M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000). [CrossRef]
  5. W. L. Eberhard, R. M. Schotland, “Dual-frequency Doppler-lidar method of wind measurement,” Appl. Opt. 19, 2967–2976 (1980). [CrossRef] [PubMed]
  6. B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging,” Opt. Eng. 35, 3270–3278 (1996). [CrossRef]
  7. L. Mullen, A. Vieira, P. R. Herczfeld, V. M. Contarino, “Microwave-modulated transmitter design for hybrid lidar-radar,” in Proceedings of the 1995 IEEE MTT-S International Microwave Symposium (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1495–1498. [CrossRef]
  8. L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, V. M. Contarino, “Application of radar technology to aerial lidar systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995). [CrossRef]
  9. L. J. Mullen, P. R. Herczfeld, V. M. Contarino, “Hybrid lidar-radar ocean experiment,” IEEE Trans. Microwave Theory Tech. 44, 2703–2710 (1996).
  10. M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Optical-fiber preamplifiers for ladar detection and associated measurements for improving the signal-to-noise ratio,” Opt. Eng. 33, 4023–4032 (1994). [CrossRef]
  11. J. A. Overbeck, M. S. Salisbury, M. B. Mark, E. A. Watson, “Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode,” Appl. Opt. 34, 7724–7730 (1995). [CrossRef] [PubMed]
  12. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by a Cr4+:yttrium aluminum garnet absorber,” Phys. Rev. A 60, 4052–4058 (1999). [CrossRef]
  13. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997).
  14. A. Ollson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989). [CrossRef]
  15. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976).
  16. O. Steinvall, “Effects of target shape and reflection on laser radar cross sections,” Appl. Opt. 39, 4381–4391 (2000). [CrossRef]
  17. A. Brignon, G. Feugnet, J.-P. Huignard, J.-P. Pocholle, “Large field of view, high-gain, compact diode pumped Nd:YAG amplifier,” Opt. Lett. 22, 1421–1423 (1997). [CrossRef]
  18. M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, E. Molva, “Tunable two-frequency lasers for lifetime measurements,” Opt. Rev. 4, 550–552 (1997). [CrossRef]
  19. X. Zhang, S. Zhao, Q. Wang, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000) and references therein. [CrossRef]
  20. N. D. Lai, M. Brunel, F. Bretenaker, A. Le Floch, “Stabilization of the repetition rate of passively Q-switched diode-pumped solid-state lasers,” Appl. Phys. Lett. 79, 1073–1075 (2001). [CrossRef]
  21. T. Y. Fan, “Effect of finite lower level lifetime on Q-switched lasers,” IEEE J. Quantum Electron. 24, 2345–2349 (1988). [CrossRef]
  22. J. J. Degnan, D. B. Coyle, R. B. Kay, “Effect of thermalization on Q-switched lasers properties,” IEEE J. Quantum Electron. 34, 887–899 (1998). [CrossRef]
  23. M. Hercher, “An analysis of saturable absorbers,” Appl. Opt. 6, 947–954 (1967). [CrossRef] [PubMed]
  24. G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, L. Weichman, “Z-Scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999). [CrossRef]
  25. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999). [CrossRef]
  26. W. H. Press, S. A. Teukolsky, W. T. Wetterling, B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, Cambridge, UK, 1996).
  27. N. D. Lai, M. Brunel, F. Bretenaker, O. Emile, “Control of the pulse duration in one- and two-axis passively Q-switched solid-state lasers,” Eur. Phys. J. D 19, 403–410 (2002). [CrossRef]
  28. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, P. Thony, “Offset phase-locking of Er:Yb:Glass laser eigenstates for rf photonics applications,” IEEE Photon. Technol. Lett. 13, 367–369 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited