OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5713–5727

Optical Particle Sizing in Backscatter

Nils Damaschke, Holger Nobach, Nikolai Semidetnov, and Cameron Tropea  »View Author Affiliations


Applied Optics, Vol. 41, Issue 27, pp. 5713-5727 (2002)
http://dx.doi.org/10.1364/AO.41.005713


View Full Text Article

Acrobat PDF (654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several possibilities for the use of elastic light scattering in the backscatter range (scattering angle ϑs> 140 deg) for determination of size, velocity, and refractive index of spherical particles are investigated. First the phase Doppler technique is considered. Numerical simulations of light scattering with the Lorenz-Mie theory are used to show that the phase Doppler technique is unsuitable for such backscatter configurations, except for special measurement conditions. The time-shift (or pulse-displacement) technique is then considered by use of the Fourier-Lorenz-Mie theory. Simulations show that up to four fractional signals can be obtained by use of the technique in backscatter, corresponding to the scattering order or modes: surface wave (long path), reflection, second-order refraction (inner path), and a mixture of second-order refraction (outer path) and surface wave (short path). Signal characteristics as a function of particle size, refractive index, and particle ellipticity are studied. Suggestions for a practical measurement instrument are put forward.

© 2002 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(290.1350) Scattering : Backscattering

Citation
Nils Damaschke, Holger Nobach, Nikolai Semidetnov, and Cameron Tropea, "Optical Particle Sizing in Backscatter," Appl. Opt. 41, 5713-5727 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-27-5713


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. L. Soo, Instrumentation for Fluid-Particle Flow (Andrew Publishing, Norwich, N.Y., 1999).
  2. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, Cambridge, England, 1999).
  3. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  4. H. Bultynck, “Développements de sondes laser Doppler miniatures pour la mesure de particules dans des écoulemnets réels complexes,” Ph.D. dissertation (Université de Rouen, Mont Saint Aignan, France, 1998).
  5. E. A. Hovenac and J. A. Lock, “Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A 9, 781–795 (1992).
  6. F. Onofri, Th. Girasole, G. Gréhan, G. Gouesbet, G. Brenn, J. Domnick, and C. Tropea, “Phase-Doppler anemometry with dual burst technique for measurement of refractive index and absorption coefficient simultaneously with size and velocity,” Part. Part. Syst. Charact. 13, 112–123 (1996).
  7. H. Bultynck, F. Onofri, G. Gréhan, and G. Gouesbet, “Sonde Phase Doppler miniature: applications aux diagnostics en milieux hostiles,” in Proceedings of the Fifth Congress on Francophone de Vélocimétrie Laser (Complex de Recherche Interprofessionnel en Aerothermochimie, Université et Institut National des Sciences Appliqués de Rouen, Rouen, France, 1996).
  8. G. Gréhan, G. Gouesbet, A. Naqwi, and F. Durst, “Particle trajectory effects in phase Doppler systems: computations and experiments,” Part. Part. Syst. Charact. 10, 332–338 (1993).
  9. H.-E. Albrecht, M. Borys, and K. Hübner, “Generalized theory for simultaneous measurement of particle size and velocity using laser-Doppler- and laser-two-focus methods,” Part. Part. Syst. Charact. 10, 138–145 (1993).
  10. M. Borys, “Analyse des Amplituden- und Phasenverhaltens von Laser-Doppler-Signalen zur Grössenbestimmung sphärischer Teilchen,” Ph.D. dissertation (Universität Rostock, Shaker-Verlag, Aachen, Germany, 1996).
  11. B. Pavlovski and N. Semidetnov, “Simultaneous measurement of velocity, size and concentrations for particles moving in two-phase flow,” Meas. Tech. (USSR) (Izmer. Tekh.) 9, 40–42 (1991), in Russian.
  12. C. F. Hess and C. P. Wood, “Pulse displacement technique to measure particle size and velocity in high density application,” in Laser Techniques and Applications to Fluid Mechanics, R. J. Adrian, D. F. G. Durãu, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds. (Springer-Verlag, Berlin, Germany, 1993), pp. 131–144.
  13. S. M. Lin, D. R. Waterman, and A. H. Lettington, “Measurement of droplet velocity, size, and refractive index using the pulse displacement technique,” Meas. Sci. Technol. 11, L1–L4 (2000).
  14. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, “The imaging properties of particles in laser beams,” Meas. Sci. Technol. 10, 564–574 (1999).
  15. H.-E. Albrecht, H. Bech, N. Damaschke, and M. Feleke, “Die Berechnung der Streuintensität eines beliebig im Laserstrahl positionierten Teilchens mit Hilfe der zweidimensionalen Fouriertransformation,” Optik (Stuttgart) 100, 118–124 (1995).
  16. V. Strunck, H. Müller, and D. Dopheide, “Traversionsfreier LDA-Grenzschichtmessungen mit Mikrometerauflösung im Messvolumen,” in Proceedings of Lasermethoden in der Strömungsmesstechnik, W. Merzkirch, F. Peters, B. Ruck, D. Dopheide, and A. Leder, eds. (Shaker-Verlag, Aachen, Germany, 1998), paper 28.
  17. J. P. A. J. van Beeck and M. L. Riethmuller, “Rainbow interferometry with wire diffraction for simultaneous measurement of droplet temperature, size and velocity,” Part. Part. Syst. Charact. 14, 186–192 (1997).
  18. H. Lohner, P. Lehmann, and K. Bauckhage, “Detection based on rainbow refractometry of droplet sphericity in liquid-liquid systems,” Appl. Opt. 38, 1127–1132 (1999).
  19. H.-E. Albrecht, M. Borys, M. Wenzel, and Th. Wriedt, “Influence of the measurement volume on the phase error in phase Doppler anemometry. Part 1. Reflective mode operation,” Part. Part. Syst. Charact. 11, 339–344 (1994).
  20. H.-E. Albrecht, M. Borys, and M. Wenzel, “Influence of the measurement volume on the phase error in phase Doppler anemometry. Part 2. Analysis by extension of geometrical optics to the laser beam; refractive mode operation,” Part. Part. Syst. Charact. 13, 18–26 (1996).
  21. H. Nobach, “Analysis of dual-burst laser Doppler signals,” Meas. Sci. Technol. 13, 33–44 (2002).
  22. J. Domnick, H. Ertl, and C. Tropea, “Processing of phase Doppler signals using the cross spectral density function,” in Application of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanuma, D. F. G. Durao, F. Durst, and J. H. Whitelaw, eds. (Springer-Verlag, Berlin, Germany, 1989), pp. 473–483.
  23. K. Hishida, K. Kobashi, and M. Maeda, “Improvement of LDA/PDA using a digital signal processor (DSP),” in Proceedings of the Third International Conference on Laser Anemometry (BHRA Information Services, Cranfield, Bedford MK41 OAJ, UK, 1989), paper S2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited