OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5755–5772

Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters

ZhongPing Lee, Kendall L. Carder, and Robert A. Arnone  »View Author Affiliations


Applied Optics, Vol. 41, Issue 27, pp. 5755-5772 (2002)
http://dx.doi.org/10.1364/AO.41.005755


View Full Text Article

Enhanced HTML    Acrobat PDF (455 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For open ocean and coastal waters, a multiband quasi-analytical algorithm is developed to retrieve absorption and backscattering coefficients, as well as absorption coefficients of phytoplankton pigments and gelbstoff. This algorithm is based on remote-sensing reflectance models derived from the radiative transfer equation, and values of total absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. In the calculation of total absorption coefficient, no spectral models for pigment and gelbstoff absorption coefficients are used. Actually those absorption coefficients are spectrally decomposed from the derived total absorption coefficient in a separate calculation. The algorithm is easy to understand and simple to implement. It can be applied to data from past and current satellite sensors, as well as to data from hyperspectral sensors. There are only limited empirical relationships involved in the algorithm, and they are for less important properties, which implies that the concept and details of the algorithm could be applied to many data for oceanic observations. The algorithm is applied to simulated data and field data, both non-case1, to test its performance, and the results are quite promising. More independent tests with field-measured data are desired to validate and improve this algorithm.

© 2002 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: February 21, 2002
Revised Manuscript: June 11, 2002
Published: September 20, 2002

Citation
ZhongPing Lee, Kendall L. Carder, and Robert A. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-27-5755


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Preisendorfer, Introduction, Vol. 1 of Hydrologic Optics, NTIS PB-259 793/8ST (National Technical Information Service, Springfield, Ill., 1976).
  2. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review, R. T. Barber, C. N. K. Mooers, M. J. Bowman, B. Zeitzschel, eds. (Springer-Verlag, New York, 1983). [CrossRef]
  3. N. G. Jerlov, Marine Optics, Vol. 14 of Elsevier Oceanography Series (Elsevier, New York, 1976).
  4. K. L. Carder, P. Reinersman, R. F. Chen, F. Mueller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sens. Environ. 44, 205–216 (1993). [CrossRef]
  5. R. P. Stumpf, J. R. Pennock, “Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary,” Remote Sens. Environ. 38, 183–191 (1991). [CrossRef]
  6. IOCCG, Status and Plans for Satellite Ocean-Color Missions: Considerations for Complementary Missions, J. Yoder, ed., Reports of the International Ocean-Colour Coordinating Group, No. 2 (IOCCG, Dartmouth, Nova Scotia, Canada, 1998).
  7. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  8. R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256. [CrossRef]
  9. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  10. J. L. Mueller, C. C. Trees, “Revised SeaWIFS prelaunch algorithm for diffuse attenuation coefficient K(490),” in Case Studies for SeaWiFS Calibration and Validation, NASA Tech Memo. 104566, Vol. 41, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1997), pp. 18–21.
  11. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. S. Patch, “An empirical algorithm for light absorption by ocean water based on color,” J. Geophys. Res. 103, 27967–27978 (1998). [CrossRef]
  12. R. Doerffer, H. Schiller, “Determination of Case 2 water constituents using radiative transfer simulation and its inversion by neural networks,” in Proceedings of Ocean Optics XIV, S. G. Ackleson, J. Campbell, eds. (U.S. Office of Naval Research, Washington, D.C., 1998).
  13. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989). [CrossRef]
  14. F. E. Hoge, R. N. Swift, “Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color sensor bands,” Appl. Opt. 25, 3677–3682 (1986). [CrossRef] [PubMed]
  15. S. Sathyendranath, F. E. Hoge, T. Platt, R. N. Swift, “Detection of phytoplankton pigments from ocean color: improved algorithms,” Appl. Opt. 33, 1081–1089 (1994). [CrossRef] [PubMed]
  16. J. O’Reilly, S. Maritorena, B. G. Mitchell, D. Siegel, K. L. Carder, S. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  17. M. X. He, Z. S. Liu, K. P. Du, L. P. Li, R. Chen, K. L. Carder, Z. P. Lee, “Retrieval of chlorophyll from remote-sensing reflectance in the China Seas,” Appl. Opt. 39, 2467–2474 (2000). [CrossRef]
  18. M. Kahru, B. G. Mitchell, “Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current,” Int. J. Remote Sens. 20, 3423–3429 (1999). [CrossRef]
  19. H. Loisel, D. Stramski, B. G. Mitchell, F. Fell, V. Fournier-Sicre, B. Lemasle, M. Babin, “Comparison of the ocean inherent optical properties obtained from measurements and inverse modeling,” Appl. Opt. 40, 2384–2397 (2001). [CrossRef]
  20. M. Sydor, R. Arnone, R. W. Gould, G. E. Terrie, S. D. Ladner, C. G. Wood, “Remote-sensing technique for determination of the volume absorption coefficient of turbid water,” Appl. Opt. 37, 4944–4950 (1998). [CrossRef]
  21. R. W. Gould, R. A. Arnone, M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coastal Res. 17, 328–341 (2001).
  22. S. Sathyendranath, G. Cota, V. Stuart, M. Maass, T. Platt, “Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches,” Int. J. Remote Sens. 22, 249–273 (2001). [CrossRef]
  23. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).
  24. R. Doerffer, J. Fisher, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7475–7466 (1994). [CrossRef]
  25. F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996). [CrossRef]
  26. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999). [CrossRef]
  27. C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13279–13294 (1995). [CrossRef]
  28. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996). [CrossRef] [PubMed]
  29. S. A. Garver, D. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997). [CrossRef]
  30. A. H. Barnard, J. R. Zaneveld, W. S. Pegau, “In situ determination of the remotely sensed reflectance and the absorption coefficient: closure and inversion,” Appl. Opt. 38, 5108–5117 (1999). [CrossRef]
  31. IOCCG, Remote Sensing of Ocean Colour in Coastal, and Other Optically Complex, Waters, S. Sathyendranath, ed., Reports of the International Ocean-Colour Coordinating Group, No. 3 (IOCCG, Dartmouth, Nova Scotia Canada, 2000).
  32. Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35, 463–474 (1996). [CrossRef] [PubMed]
  33. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]
  34. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999). [CrossRef]
  35. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  36. J. R. V. Zaneveld, “Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation,” Appl. Opt. 21, 4146–4150 (1982). [CrossRef] [PubMed]
  37. J. H. Jerome, R. P. Bukata, J. R. Miller, “Remote sensing reflectance and its relationship to optical properties of natural waters,” Int. J. Remote Sens. 17, 3135–3155 (1996). [CrossRef]
  38. Z. P. Lee, K. L. Carder, “Particle phase function and remote-sensing reflectance model: a revisit,” presented at the Ocean Color Research Team Meeting, San Diego, Calif., 21–24 May 2001.
  39. D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 250–268 (1990). [CrossRef]
  40. X. D. Zhang, M. Lewis, B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998). [CrossRef]
  41. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  42. H. R. Gordon, R. C. Smith, J. R. V. Zaneveld, “Introduction to ocean optics,” in Ocean Optics VI, S. Q. Duntley, ed., Proc. SPIE208, 1–43 (1980). [CrossRef]
  43. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981). [CrossRef] [PubMed]
  44. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, New York, 1994).
  45. C. D. Mobley, Hydrolight 3.0 Users’ Guide, Final Report (SRI International, Menlo Park, Calif., 1995).
  46. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 160–166 (1996). [CrossRef]
  47. Z. P. Lee, “Visible-infrared remote-sensing model and applications for ocean waters,” Ph.D. dissertation (Department of Marine Science, University of South Florida, St. Petersburg, Fla., 1994).
  48. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995). [CrossRef]
  49. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  50. N. Hoepffner, S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol. Prog. Ser. 73, 11–23 (1991). [CrossRef]
  51. K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989). [CrossRef]
  52. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products,” J. Geophys. Res. 96, 20599–20611 (1991). [CrossRef]
  53. R. Pope, E. Fry, “Absorption spectrum (380–700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  54. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93, 10749–10768 (1988). [CrossRef]
  55. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001). [CrossRef]
  56. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998). [CrossRef]
  57. K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985). [CrossRef]
  58. J. L. MuellerSan Diego State University Center for Hydro-Optics and Remote Sensing, and SIMBIOS Science Team, Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Rev. 3, NASA Tech. Memo 210004J. L. Mueller, G. S. Fargion, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2002), Vols. 1 and 2.
  59. W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13201–13220 (1995). [CrossRef]
  60. For more details on the AC9, see http://www.wetlabs.com/publac9 .
  61. H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975). [CrossRef] [PubMed]
  62. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992). [CrossRef] [PubMed]
  63. Z. P. Lee, K. L. Carder, R. F. Chen, T. G. Peacock, “Properties of the water column and bottom derived from AVIRIS data,” J. Geophys. Res. 106, 11639–11652 (2001). [CrossRef]
  64. R. H. Stavn, A. D. Weidemann, “Shape factors, two-flow models, and the problem of irradiance inversion in estimating optical parameters,” Limnol. Oceanogr. 34, 1426–1441 (1989). [CrossRef]
  65. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for interpretation of hyperspectral remote sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994). [CrossRef] [PubMed]
  66. S. K. Hawes, “Quantum fluorescence efficiencies of marine fulvic and humic acids,” M.S. thesis (Department of Marine Science, University of South Florida, St. Petersburg, Fla., 1992).
  67. S. Sathyendranath, T. Platt, “Ocean-color model incorporating transpectral processes,” Appl. Opt. 37, 2216–2227 (1998). [CrossRef]
  68. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implications of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited