OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5783–5791

Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical Simulation

Igor Veselovskii, Vadim Griaznov, Alexei Kolgotin, and David N. Whiteman  »View Author Affiliations

Applied Optics, Vol. 41, Issue 27, pp. 5783-5791 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The results of numerical simulation of inelastic scattering by microspheres with the use of a dipole model are presented. The formulas that are derived speed up the computation, thereby permitting larger-sized microspheres to be studied. The angular scattering cross section and depolarization are calculated for a wide range of size parameters as well as for different orientations of incident wave polarization. Calculations performed with small incremental changes in size permit the influence of morphology-dependent resonance (MDR) on the power and angular distribution of scattered radiation to be studied. TM and TE types of MDR produce enhanced scattering of the incident wave with vertical and horizontal polarization; the corresponding shape of the phase function becomes oscillatory. Special attention is paid to the simulation of backward scattering by water droplets, which is important for Raman lidar applications.

© 2002 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7340) Atmospheric and oceanic optics : Water
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(290.5860) Scattering : Scattering, Raman

Original Manuscript: February 14, 2002
Revised Manuscript: June 24, 2002
Published: September 20, 2002

Igor Veselovskii, Vadim Griaznov, Alexei Kolgotin, and David N. Whiteman, "Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical Simulation," Appl. Opt. 41, 5783-5791 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984). [CrossRef] [PubMed]
  2. R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985). [CrossRef] [PubMed]
  3. G. Shweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol. Sci. 21, 483–509 (1990). [CrossRef]
  4. G. Shweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991). [CrossRef]
  5. K. H. Fung, I. N. Tang, “Relative Raman scattering cross-section measurements with suspended particles,” Appl. Spectrosc. 45, 734–737 (1991). [CrossRef]
  6. J. Popp, M. Lankers, K. Schaschek, W. Kifer, J. T. Hodges, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 34, 2380–2386 (1995). [CrossRef] [PubMed]
  7. T. Kaiser, G. Roll, G. Shweiger, “Investigation of coated droplets in an optical trap: Raman-scattering, elastic-light-scattering and evaporation characteristics,” Appl. Opt. 35, 5918–5924 (1996). [CrossRef] [PubMed]
  8. R. Vehring, “Linear Raman spectroscopy on aqueous aerosols: influence of nonlinear effects on detection limits,” J. Aerosol. Sci. 29, 65–79 (1998). [CrossRef]
  9. R. Vehring, C. L. Aardahl, G. Schweiger, E. J. Davis, “The characterization of fine particles originating from an uncharged aerosol: size dependence and detection limits for Raman analysis,” J. Aerosol. Sci. 29, 1045–1061 (1998).
  10. J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, W. Kiefer, “High-precision determination of size, refractive index, and dispersion of single microparticles from morphology-dependent resonances in optical processes,” Appl. Spectrosc. 52, 284–291 (1998). [CrossRef]
  11. J. Musick, J. Popp, M. Trunck, W. Kiefer, “Investigations of radical polymerization and copolymerization reactions in optically levitated microdroplets by simultaneous Raman spectroscopy, Mie scattering, and radiation pressure measurements,” Appl. Spectrosc. 52, 692–701 (1998). [CrossRef]
  12. R. Pastel, A. Struthers, “Measuring evaporation rates of laser-trapped droplets by use of fluorescent morphology-dependent resonances,” Appl. Opt. 40, 2510–2514 (2001). [CrossRef]
  13. M. A. Stowers, S. K. Friedlander, “Chemical characterization of flowing polydisperse aerosols by Raman spectroscopy,” Aerosol Sci. Technol. 36, 48–61 (2002). [CrossRef]
  14. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, “Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency,” Appl. Opt. 35, 6278–6288 (1996). [CrossRef] [PubMed]
  15. P. H. Kaye, J. E. Barton, E. Hirst, J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,” Appl. Opt. 39, 3738–3745 (2000). [CrossRef]
  16. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt. 40, 3005–3013 (2001). [CrossRef]
  17. H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976). [CrossRef]
  18. H. Chew, M. Kerker, P. J. McNulty, “Raman and fluorescent scattering by molecules embedded in concentric spheres,” J. Opt. Soc. Am. 66, 440–444 (1976). [CrossRef]
  19. H. Chew, “Total fluorescent scattering cross section,” Phys. Rev. A 37, 4107–4110 (1988). [CrossRef] [PubMed]
  20. M. Kerker, P. J. McNulty, M. Sculley, H. Chew, D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: results for incoherent optical processes,” J. Opt. Soc. Am. 68, 1676–1686 (1979). [CrossRef]
  21. M. Kerker, S. D. Druger, “Raman and fluorescent scattering by molecules embedded in spheres with radii up to several multiples of the wavelength,” Appl. Opt. 18, 1172–1179 (1979). [CrossRef] [PubMed]
  22. S. D. Druger, P. J. McNulty, “Radiation patterns of fluorescence from molecules embedded in small particles: general case,” Appl. Opt. 22, 75–82 (1983). [CrossRef] [PubMed]
  23. S. D. Druger, P. J. McNulty, “Radiation pattern of Raman scattering from randomly oriented molecules in or near small particles,” Phys. Rev. A 29, 1545–1547 (1984). [CrossRef]
  24. V. Griaznov, I. Veselovskii, A. Kolgotin, D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 1. General expressions,” Appl. Opt. (to be published).
  25. J. R. Scherer, M. K. Go, S. Kint, “Raman spectra and structure of water from -10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974). [CrossRef]
  26. J. P. Kratohvil, M.-P. Lee, M. Kerker, “Angular distribution of fluorescence from small particles,” Appl. Opt. 17, 1978–1980 (1978). [CrossRef] [PubMed]
  27. E.-H. Lee, R. E. Benner, J. B. Fenn, R. K. Chang, “Angular distribution of fluorescence from monodispersed particles,” Appl. Opt. 17, 1980–1982 (1978). [CrossRef]
  28. K. H. Fung, I. N. Tang, “Polarization measurements on Raman scattering from spherical droplets,” Appl. Spectrosc. 46, 1189–1192 (1992). [CrossRef]
  29. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  30. S. H. Melfi, K. D. Evans, J. Li, D. Whiteman, R. Ferrare, G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997). [CrossRef] [PubMed]
  31. D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31,411–31,419 (1999). [CrossRef]
  32. I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, J. M. Lee, “Raman lidar for the study of liquid water and water vapor in troposphere,” Appl. Phys. B 71, 113–117 (2000). [CrossRef]
  33. I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, J. M. Lee, “Study of atmospheric water in gaseous and liquid state by using combined elastic-Raman depolarization lidar,” Appl. Phys. B 73, 739–744 (2001). [CrossRef]
  34. S. C. Hill, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000). [CrossRef] [PubMed]
  35. N. Velesco, G. Shweiger, “Geometrical optics calculation of inelastic scattering on large particles,” Appl. Opt. 38, 1046–1052 (1999). [CrossRef]
  36. Y. L. Pan, S. C. Hill, J. P. Wolf, S. Holler, R. K. Chang, J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994–2999 (2002). [CrossRef] [PubMed]
  37. S. C. Hill, R. E. Benner, C. K. Rushfort, P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984). [CrossRef] [PubMed]
  38. S. C. Hill, C. K. Rushforth, R. E. Benner, P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations — algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985). [CrossRef] [PubMed]
  39. A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989). [CrossRef] [PubMed]
  40. J. D. Eversole, H. B. Lin, A. J. Campillo, “Input-output resonance correlation in laser induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995). [CrossRef]
  41. H. B. Lin, A. J. Campillo, “cw nonlinear optics in droplet microcavities displaying enhanced gain,” Phys. Rev. Lett. 73, 2440–2443 (1994). [CrossRef] [PubMed]
  42. L. G. Guimaraes, H. M. Nussenzveig, “Uniform approximation of Mie resonances,” J. Mod. Opt. 41, 625–647 (1994). [CrossRef]
  43. G. Chen, W. P. Acker, R. K. Chang, S. C. Hill, “Fine structures in the angular distribution of stimulated Raman scattering from single droplets,” Opt. Lett. 16, 117–119 (1991). [CrossRef] [PubMed]
  44. K. Cunningham, P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited