OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 27 — Sep. 20, 2002
  • pp: 5804–5813

Time-resolved studies of the interactions between pulsed lasers and aerosols

Cindy L. DeForest, Jun Qian, and Roger E. Miller  »View Author Affiliations


Applied Optics, Vol. 41, Issue 27, pp. 5804-5813 (2002)
http://dx.doi.org/10.1364/AO.41.005804


View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Studies of the interaction between a pulsed CO2 laser and micrometer-sized aqueous and organic particles by use of light-scattering methods and step-scan Fourier-transform infrared (FTIR) spectroscopy are reported. Visible two-color extinction experiments indicate primary particle shattering, accompanied by a high fraction of vaporization, followed by secondary particle evaporation. The extent of the latter depends on the pulse intensity and particle composition. Angle-resolved light-scattering investigations provide insight into the aerosol size distribution and temperature following the pulsed heating event. The time dependence of the vapor plume, monitored with step-scan FTIR spectroscopy, confirms that a large fraction of the initial particle is quickly evaporated during the shattering event, followed by secondary fragment evaporation and thermal expansion.

© 2002 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(290.5850) Scattering : Scattering, particles
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6500) Spectroscopy : Spectroscopy, time-resolved

History
Original Manuscript: December 11, 2001
Revised Manuscript: June 10, 2002
Published: September 20, 2002

Citation
Cindy L. DeForest, Jun Qian, and Roger E. Miller, "Time-resolved studies of the interactions between pulsed lasers and aerosols," Appl. Opt. 41, 5804-5813 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-27-5804


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Armstrong, “Laser-induced droplet heating,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), pp. 201–275. [CrossRef]
  2. S. C. Davies, J. R. Brock, “Laser beam propagation in an evaporating polydispersed aerosol,” Appl. Opt. 26, 1806–1813 (1987). [CrossRef] [PubMed]
  3. H. S. Kwok, T. M. Rossi, W. S. Lau, D. T. Shaw, “Enhanced transmission in CO2-laser-aerosol interactions,” Opt. Lett. 13, 192–194 (1988). [CrossRef] [PubMed]
  4. J. E. Lowder, H. Kleiman, R. W. O’Neil, “High-energy CO2 laser pulse transmission through fog,” J. Appl. Phys. 45, 221–223 (1973). [CrossRef]
  5. S. M. Chitanvis, S. A. W. Gerstl, “Aerosol clearing model for a high-energy laser beam propagating through vaporizing media,” J. Appl. Phys. 62, 3091–3096 (1987). [CrossRef]
  6. E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73, 2317–2322 (2001). [CrossRef] [PubMed]
  7. C. A. Noble, K. A. Prather, “Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol particles,” Envon. Sci. Technol. 30, 2667–2680 (1996). [CrossRef]
  8. T. A. Schoolcraft, G. S. Constable, L. V. Zhigilei, B. J. Garrison, “Molecular dynamics simulation of the laser disintegration of aerosol particles,” Anal. Chem. 72, 5143–5150 (2000). [CrossRef] [PubMed]
  9. A. Zardecki, R. L. Armstrong, “Energy balance in laser-irradiated vaporizing droplets,” Appl. Opt. 27, 3690–3695 (1988). [CrossRef] [PubMed]
  10. R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of irradiated droplets,” Phys. Fluids 29, 3573–3581 (1986). [CrossRef]
  11. G. Sageev, J. H. Seinfeld, “Laser heating of an aqueous aerosol particle,” Appl. Opt. 23, 4368–4374 (1984). [CrossRef] [PubMed]
  12. S. C. Davies, J. R. Brock, “Laser evaporation of droplets,” Appl. Opt. 26, 786–793 (1987). [CrossRef] [PubMed]
  13. R. L. Armstrong, A. Zardecki, “Diffusive and convective vaporization of irradiated droplets,” J. Appl. Phys. 62, 4571–4578 (1987). [CrossRef]
  14. A. Zardecki, J. D. Pendleton, “Hydrodynamics of water droplets irradiated by a pulsed CO2 laser,” Appl. Opt. 28, 638–640 (1989). [CrossRef] [PubMed]
  15. S. M. Chitanvis, “High energy laser interactions with water droplets,” Appl. Opt. 24, 3552–3556 (1985). [CrossRef] [PubMed]
  16. S. M. Chitanvis, “Explosive vaporization of small droplets by a high-energy laser beam,” J. Appl. Phys. 62, 4387–4393 (1987). [CrossRef]
  17. Yu. E. Geints, A. A. Zemlyanov, R. L. Armstrong, “Explosive boiling of water droplets irradiated with intense CO2-laser radiation: numerical experiments,” Appl. Opt. 33, 5805–5810 (1994). [CrossRef] [PubMed]
  18. V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, A. V. Kuzikovskii, “Laser beam propagation through an explosively evaporating water-droplet aerosol,” in High-Power Laser Radiation in Atmospheric Aerosols: Nonlinear Optics of Aerodispersed Media (Reidel, Dordrecht, The Netherlands, 1985), pp. 128–164. [CrossRef]
  19. J. C. Carls, Y. Seo, J. R. Brock, “Laser-induced breakdown and detonation waves in droplets. II. Model,” J. Opt. Soc. Am. B 8, 329–336 (1991). [CrossRef]
  20. P. Kafalas, J. Herrmann, “Dynamics and energetics of the explosive vaporization of fog droplets by a 10.6-µm laser pulse,” Appl. Opt. 12, 772–775 (1973). [CrossRef] [PubMed]
  21. M. Autric, P. Vigliano, D. Dufresne, J. P. Caressa, Ph. Bournot, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 26, 65–71 (1988). [CrossRef]
  22. C. F. Wood, D. H. Leach, J.-Z. Zhang, R. K. Chang, P. W. Barber, “Time-resolved shadowgraphs of large individual water and ethanol droplets vaporized by a pulsed CO2 laser,” Appl. Opt. 27, 2279–2286 (1988). [CrossRef] [PubMed]
  23. R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990). [CrossRef] [PubMed]
  24. B.-S. Park, A. Biswas, R. L. Armstrong, R. G. Pinnick, “Delay of explosive vaporization in pulsed laser-heated droplets,” Opt. Lett. 15, 206–208 (1990). [CrossRef] [PubMed]
  25. A. A. Zemlyanov, Y. E. Geints, A. M. Kabanov, R. L. Armstrong, “Investigation of laser-induced destruction of droplets by acoustic methods,” Appl. Opt. 35, 6062–6068 (1996). [CrossRef] [PubMed]
  26. M. C. Fowler, “Effect of a CO2 laser pulse on transmission through fog at visible and IR wavelengths,” Appl. Opt. 22, 2960–2964 (1983). [CrossRef]
  27. A. A. Zemlyanov, A. M. Kabanov, “Signal of light scattering from a model water droplet aerosol exposed to the pulses of intense radiation of a CO2 laser,” Atmos. Oceanic Opt. 4, 501–503 (1991).
  28. T. P. Marcy, J. P. Reid, C. X. W. Qian, S. R. Leone, “Addition-insertion-elimination reactions of O(3P) with halogenated iodoalkanes producing HF(v) and HCl (v),” J. Chem. Phys. 114, 2251–2258 (2001). [CrossRef]
  29. D. K. Liu, L. T. Letendre, H.-L. Dai, “193 nm photolysis of vinyl bromide: nascent product distribution of the C2H3Br-C2H2 (vinylidene) + HBr channel,” J. Chem. Phys. 115, 1734–1741 (2001). [CrossRef]
  30. W. Uhmann, A. Becker, Ch. Taran, F. Siebert, “Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer,” Appl. Spectrosc. 45, 390–397 (1991). [CrossRef]
  31. W. Hage, M. Kim, H. Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996). [CrossRef]
  32. P. Chen, R. A. Palmer, “Ten-nanosecond step-scan FT-IR absorption difference time-resolved spectroscopy: applications to excited states of transition metal complexes,” Appl. Spectrosc. 51, 580–583 (1997). [CrossRef]
  33. H. Wang, D. K. Graff, J. R. Schoonover, R. A. Palmer, “Static and dynamic infrared linear dichroic study of a polyester/polyurethane copolymer using step-scan FT-IR and a photoelastic modulator,” Appl. Spectrosc. 53, 687–696 (1999). [CrossRef]
  34. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  35. W. Brown, Light Scattering: Principles and Development (Clarendon, Oxford, UK, 1996).
  36. K. Blum, H. J. Fissan, “Investigations of scattered light intensity distributions for determination of particle size distribution parameters,” J. Aerosol Sci. 17, 406–409 (1986). [CrossRef]
  37. A. C. Holland, J. S. Draper, “Analytical and experimental investigation of light scattering from polydispersions of Mie particles,” Appl. Opt. 6, 511–518 (1967). [CrossRef] [PubMed]
  38. J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus: A Practical Guide to Design and Construction, 2nd ed. (Addison-Wesley, Redwood City, Calif., 1989).
  39. P. I. Singh, C. J. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1980). [CrossRef]
  40. A. H. Harvey, J. S. Gallagher, J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998). [CrossRef]
  41. C. Rodig, F. Siebert, “Errors and artifacts in time-resolved step-scan FT-IR spectroscopy,” Appl. Spectrosc. 53, 893–901 (1999). [CrossRef]
  42. T. Yuzawa, C. Kato, M. W. George, H. Hamaguchi, “Nanosecond time-resolved infrared spectroscopy with a dispersive scanning spectrometer,” Appl. Spectrosc. 48, 684–690 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited