Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time-resolved studies of the interactions between pulsed lasers and aerosols

Not Accessible

Your library or personal account may give you access

Abstract

Studies of the interaction between a pulsed CO2 laser and micrometer-sized aqueous and organic particles by use of light-scattering methods and step-scan Fourier-transform infrared (FTIR) spectroscopy are reported. Visible two-color extinction experiments indicate primary particle shattering, accompanied by a high fraction of vaporization, followed by secondary particle evaporation. The extent of the latter depends on the pulse intensity and particle composition. Angle-resolved light-scattering investigations provide insight into the aerosol size distribution and temperature following the pulsed heating event. The time dependence of the vapor plume, monitored with step-scan FTIR spectroscopy, confirms that a large fraction of the initial particle is quickly evaporated during the shattering event, followed by secondary fragment evaporation and thermal expansion.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Cloud hole boring with long pulse CO2 lasers: theory and experiment

Gerard P. Quigley, Robert B. Webster, Edward J. Caramana, Richard L. Morse, and George W. York
Appl. Opt. 30(21) 3041-3046 (1991)

Laser evaporation of droplets

S. C. Davies and James R. Brock
Appl. Opt. 26(5) 786-793 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved