OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 28 — Oct. 1, 2002
  • pp: 5891–5895

Comparative study with double-exposure digital holographic interferometry and a Shack–Hartmann sensor to characterize transparent materials

Robert B. Owen and Alex A. Zozulya  »View Author Affiliations

Applied Optics, Vol. 41, Issue 28, pp. 5891-5895 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (924 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare wave-front measurements using double-exposure digital holography and a Shack-Hartmann sensor. A voltage-driven liquid-crystal wedge modulates the optical wave front and provides a refractive-index gradient typical of interesting transparent materials. Measurement accuracy and reliability are similar for both methods. In our opinion, digital holographic interferometry has several advantages for both laboratory and field environments. When compared with Shack-Hartmann methods, these advantages include hardware simplicity and robustness, relative insensitivity to sample dynamic range, and less computational demanding and more straightforward data evaluation algorithms. We believe that digital holography provides the methodology of choice for field studies of transparent materials such as microgravity protein crystal growth experiments.

© 2002 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(090.2880) Holography : Holographic interferometry
(100.2000) Image processing : Digital image processing

Original Manuscript: April 16, 2002
Revised Manuscript: June 27, 2002
Published: October 1, 2002

Robert B. Owen and Alex A. Zozulya, "Comparative study with double-exposure digital holographic interferometry and a Shack–Hartmann sensor to characterize transparent materials," Appl. Opt. 41, 5891-5895 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. B. Owen, “Interferometry and holography in a low-gravity environment,” Appl. Opt. 21, 1349–1355 (1982). [CrossRef] [PubMed]
  2. M. H. Johnston, R. B. Owen, “Optical observations of unidirectional solidification in microgravity,” Metall. Trans. A 14, 2163–2167 (1983). [CrossRef]
  3. R. B. Owen, R. L. Kroes, W. K. Witherow, “Results and further experiments using Spacelab holography,” Opt. Lett. 11, 407–409 (1986). [CrossRef] [PubMed]
  4. R. V. Shack, J. D. Rancourt, H. Morrow, “Effects of dilution on a six-element synthetic aperture,” Appl. Opt. 10, 257–259 (1971). [CrossRef] [PubMed]
  5. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994). [CrossRef]
  6. U. Schnars, W. P. O. Jüptner, “Digital recording and reconstruction of holograms in holographic interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994). [CrossRef] [PubMed]
  7. R. B. Owen, A. A. Zozulya, M. R. Benoit, D. M. Klaus, “Microgravity materials and life sciences research applications of digital holography,” Appl. Opt. 41, 3927–3935 (2002). [CrossRef] [PubMed]
  8. J. Pfund, N. Lindlein, J. Schwider, R. Burow, Th. Blümel, K.-E. Elssner, “Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack–Hartmann sensor,” Opt. Lett. 23, 742–744 (1998). [CrossRef]
  9. J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, M. Feldman, A. A. Grey, F. R. Holdener, J. T. Salmon, L. G. Seppala, J. S. Toeppen, L. Van Atta, B. M. Van Wonterghem, W. T. Whistler, S. E. Winters, B. W. Woods, “Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications,” Appl. Opt. 39, 4540–4546 (2000). [CrossRef]
  10. S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindelein, J. Schwider, “Wave-front reconstruction with a Shack-Hartmann sensor with an iterative spline fitting method,” Appl. Opt. 39, 561–567 (2000). [CrossRef]
  11. L. E. Schmutz, B. M. Levine, “Hartmann sensors detect optical fabrication errors,” Laser Focus World 32(4), 111–117 (1996).
  12. J. Pfund, N. Lindlein, J. Schwider, “Dynamic range expansion of a Shack–Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23, 995–997 (1998). [CrossRef]
  13. R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited