OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 28 — Oct. 1, 2002
  • pp: 5989–5996

Speckle-contrast monitoring of tissue thermal modification

Dmitry A. Zimnyakov, Dmitry N. Agafonov, Alexander P. Sviridov, Alexander I. Omel’chenko, Liana V. Kuznetsova, and Victor N. Bagratashvili  »View Author Affiliations

Applied Optics, Vol. 41, Issue 28, pp. 5989-5996 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of the contrast value of time-averaged speckle-modulated images of cartilage tissue are used to study tissue thermal modification in the case of laser-light treatment. This modification is related to thermally induced internal stress relaxation in the matrix of the treated tissue. The specific feature of the evolution of time-averaged speckle contrast with a change in the current temperature of modified collagen tissue is the typical looplike form of the contrast-temperature dependencies associated with irreversible changes in tissue structure and correlated with changes in the tissue diffuse transmittance and the tissue internal stress mentioned by other researchers.

© 2002 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(170.6930) Medical optics and biotechnology : Tissue

Original Manuscript: November 30, 2001
Revised Manuscript: March 28, 2002
Published: October 1, 2002

Dmitry A. Zimnyakov, Dmitry N. Agafonov, Alexander P. Sviridov, Alexander I. Omel’chenko, Liana V. Kuznetsova, and Victor N. Bagratashvili, "Speckle-contrast monitoring of tissue thermal modification," Appl. Opt. 41, 5989-5996 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Stern, “In vivo evaluation of microcirculation by coherent light scattering,” Nature (London) 254, 56–58 (1975). [CrossRef]
  2. T. J. H. Essex, P. O. Byrne, “A laser Doppler scanner for imaging blood flow in skin,” J. Biomed. Eng. 13, 189–194 (1991). [CrossRef] [PubMed]
  3. D. A. Boas, A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997). [CrossRef]
  4. A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981). [CrossRef]
  5. J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996). [CrossRef] [PubMed]
  6. A. Sadhwani, K. T. Schomacker, G. J. Tearney, N. S. Nishioka, “Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnostics,” Appl. Opt. 35, 5727–5735 (1996). [CrossRef] [PubMed]
  7. S. L. Jacques, S. J. Kirkpatrick, “Acoustically modulated speckle imaging of biological tissues,” Opt. Lett. 23, 879–881 (1998). [CrossRef]
  8. A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cerebr. Blood Flow Metab. 21, 195–201 (2001).
  9. E. Sobol, A. Sviridov, A. Omelchenko, V. Bagratashvili, M. Kitai, E. Harding, N. Jones, K. Jumel, M. Mertig, W. Pompe, Y. Ovchinnikov, A. Shekhter, V. Svistuchkin, “Laser reshaping of cartilage,” Biotech Genetic Eng. Rev. 17, 553–577 (2000). [CrossRef]
  10. J. F. Wong, T. E. Milner, H. H. Kim, J. S. Nelson, E. N. Sobol, “Stress relaxation of porcine septal cartilage during Nd:YAG (1.32-µm) laser irradiation: mechanical, optical, and thermal responses,” J. Biomed. Opt. 3, 409–414 (1998). [CrossRef] [PubMed]
  11. A. Sviridov, E. Sobol, V. Bagratashvili, N. Bagratashvili, A. Omelchenko, A. Dmitriev, A. Shekhter, Yu. Ovchinnikov, V. Svistushkin, G. Nikiforova, N. Jones, J. Lowe, “Dynamics of optical and mechanical properties of cartilage at laser heating,” in Laser-Tissue Interaction and Tissue Optics II,J. Albrecht, G. P. Dalacretaz, T. H. Meier, W. Steiner, L. O. Svaasand, eds., Proc. SPIE2923, 114–117 (1996). [CrossRef]
  12. M. S. Wall, X.-H. Deng, P. A. Torzilli, S. B. Doly, S. J. O’Brien, R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg. 8, 339–344 (1999). [CrossRef] [PubMed]
  13. E. Sobol, A. Sviridov, A. Omel’chenko, V. Bagratashvili, N. Bagratashvili, V. Popov, “Mechanism of laser-induced stress relaxation in cartilage,” in Laser-Tissue Interaction VIII, S.L. Jacques, ed., Proc. SPIE2975, 310–315 (1997). [CrossRef]
  14. V. Bagratashvili, N. Bagratashvili, A. Sviridov, E. Sobol, A. Omel’chenko, S. Tsypina, V. Gapontsev, I. Samartsev, F. Feldchtein, R. Kuranov, “Kinetics of water transfer and stress relaxation in cartilage heated with 1.56-µm fiber laser,” in Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, J.O. Hollinger, S.L. Jacques, eds., Proc. SPIE3914, 102–107 (2000). [CrossRef]
  15. B. J. Wong, T. E. Milner, A. Harrington, J. Ro, X. Dao, E. N. Sobol, J. S. Nelson, “Feedback-controlled laser-mediated cartilage reshaping,” Arch. Facial Plast. Surg. 1, 282–287 (1999). [CrossRef]
  16. R. K. Otnes, L. Enochson, Applied Time Series Analysis. V. 1. Basic Techniques (Wiley, New York, 1978).
  17. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  18. J. Y. Choi, B. S. Tanenbaum, T. E. Milner, X. V. Dao, J. S. Nelson, E. N. Sobol, B. J. F. Wong, “Thermal, mechanical, optical, and morphologic changes in bovine nucleus pulposus induced by Nd:YAG (λ=1.32-µm) laser irradiation,” Lasers Surg. Med. 28, 248–254 (2001). [CrossRef]
  19. D. J. Maitland, J. T. Walsh, “Quantitative measurements of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20, 310–318 (1997). [CrossRef] [PubMed]
  20. E. N. Sobol, V. N. Bagratashvili, A. P. Sviridov, A. I. Omel’chenko, Yu. M. Ovchinnikov, A. B. Shekhter, E. Helidonis, “Cartilage shaping under laser radiation,” in Laser Surgery: Advanced Characterizations, Therapeutics, and Systems, IV, R. Anderson, ed., Proc. SPIE2128, 43–47 (1994). [CrossRef]
  21. A. P. Sviridov, E. N. Sobol, N. Jones, J. Lowe, “Effect of holmium laser radiation on stress, temperature, and structure in cartilage,” Lasers Med. Sci. 13, 73–77 (1998). [CrossRef]
  22. E. Sobol, A. Omel’chenko, M. Mertig, W. Pompe, “Scanning force microscopy of the fine structure of cartilage irradiated with a CO2 laser,” Lasers Med. Sci. 15, 15–23 (2000). [CrossRef]
  23. A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, L. C. Rosenberg, “Thermal and solvent stability of proteoglycan aggregates by quasi-elastic laser light scattering,” Carbohydrate Res. 160, 329–341 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited