OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 28 — Oct. 1, 2002
  • pp: 6006–6017

Direct Raman Imaging Techniques for Study of the Subcellular Distribution of a Drug

Jian Ling, Steven D. Weitman, Michael A. Miller, Rodney V. Moore, and Alan C. Bovik  »View Author Affiliations


Applied Optics, Vol. 41, Issue 28, pp. 6006-6017 (2002)
http://dx.doi.org/10.1364/AO.41.006006


View Full Text Article

Acrobat PDF (1231 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Direct Raman imaging techniques are demonstrated to study the drug distribution in living cells. The advantage of Raman imaging is that no external markers are required, which simplifies the sample preparation and minimally disturbs the drug mechanism during imaging. The major challenge in Raman imaging is the weak Raman signal. In this study, we present a Raman image model to describe the degradation of Raman signals by imaging processes. Using this model, we demonstrate special-purpose image-processing algorithms to restore the Raman images. The processing techniques are then applied to visualize the anticancer agent paclitaxel in living MDA-435 breast cancer cells. Raman images were obtained from a cancer cell before, during, and after drug treatment. The paclitaxel distribution illustrated in these images is explained by means of the binding characteristics of the paclitaxel and its molecular target—the microtubules. This result demonstrates that direct Raman imaging is a promising tool to study the distribution of a drug in living cells.

© 2002 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.0110) Imaging systems : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(180.0180) Microscopy : Microscopy

Citation
Jian Ling, Steven D. Weitman, Michael A. Miller, Rodney V. Moore, and Alan C. Bovik, "Direct Raman Imaging Techniques for Study of the Subcellular Distribution of a Drug," Appl. Opt. 41, 6006-6017 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-28-6006


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. H. Kerns, S. E. Hill, D. J. Detlefsen, K. J. Volk, B. H. Long, J. Carboni, and M. S. Lee, “Cellular uptake profile of paclitaxel using liquid chromatography tandem mass spectrometry,” Rapid Commun. Mass Spectrom. 12, 620–624 (1998).
  2. M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25–32 (1998).
  3. S. D. Baker, R. M. Wadkins, C. F. Stewart, W. T. Beck, and M. K. Danks, “Cell cycle analysis of amount and distribution of nuclear DNA topoisomerase I as determined by fluorescence digital imaging microscopy,” Cytometry 19, 134–145 (1995).
  4. C. S. Rao, J. J. Chu, R. S. Liu, and Y. K. Lai, “Synthesis and evaluation of [14C]-labelled and fluorescent-tagged paclitaxel derivatives as new biological probes,” Bioorg. Medic. Chem. 6, 2193–2204 (1998).
  5. H. Oyama, M. Nagane, S. Shibui, K. Nomura, and K. Mukai, “Intracellular distribution of CPT-11 in CPT-11-resistant cells with confocal laser scanning microscopy,” Jpn. J. Clin. Oncol. 22, 331–334 (1992).
  6. J. H. de Lange, N. W. Schipper, G. J. Schuurhuis, T. K. ten Kate, T. H. van Heijningen, H. M. Pinedo, J. Lankelma, and J. P. Baak, “Quantification by laser scan microscopy of intracellular doxorubicin distribution,” Cytometry 13, 571–576 (1992).
  7. J. E. Gervasoni, Jr., S. Z. Fields, S. Krishna, M. A. Baker, M. Rosado, K. Thuraisamy, A. A. Hindenburg, and R. N. Taub, “Subcellular distribution of daunorubicin in P-glycoprotein-positive and-negative drug-resistant cell lines using laser-assisted confocal microscopy,” Cancer Res. 51, 4955–4963 (1991).
  8. H. M. Coley, W. B. Amos, P. R. Twentyman, and P. Workman, “Examination by laser scanning confocal fluorescence imaging microscopy of the subcellular localisation of anthracyclines in parent and multidrug resistant cell lines,” Br. J. Cancer 67, 1316–1323 (1993).
  9. J. Itoh, R. Y. Osamura, and K. Watanabe, “Subcellular visualization of light microscopic specimens by laser scanning microscopy and computer analysis: a new application of image analysis,” J. Histochem. Cytochem. 40, 955–967 (1992).
  10. K. W. Woodburn, N. J. Vardaxis, J. S. Hill, A. H. Kaye, and D. R. Phillips, “Subcellular localization of porphyrins using confocal laser scanning microscopy,” Photochem. Photobiol. 54, 725–732 (1991).
  11. J. J. Andrew and T. M. Hancewicz, “Rapid analysis of Raman image data using two-way multivariate curve resolution,” Appl. Spectrosc. 52, 797–807 (1998).
  12. N. J. C. Bauer, M. Motamedi, J. P. Wicksted, W. F. March, C. A. B. Webers, and F. Hendrikse, “Non-invasive assessment of ocular pharmacokinetics using confocal Raman spectroscopy,” J. Ocular Pharmacol. Therapeutics 15, 123–134 (1999).
  13. R. Manoharan, W. Yang, and M. S. Feld, “Histochemical analysis of biological tissues using Raman spectroscopy,” Spectrochim. Acta Part A 52, 215–249 (1996).
  14. K. Chinked, “Optical diagnostics image tissues and tumors,” Laser Focus World (February 1996), 71–81.
  15. S. R. Goldstein, L. H. Kidder, T. M. Herne, I. W. Levin, and E. N. Lewis, “The design and implementation of a high-fidelity Raman imaging microscope,” J. Microsc. (Oxford) 184, 35–45 (1996).
  16. A. Feofanov, S. Sharonov, P. Valisa, E. Da Silva, I. Nabiev, and M. Manfait, “A new confocal stigmatic spectrometer for micro-Raman and microfluorescence spectral imaging analysis: design and applications,” Rev. Sci. Instrum. 66, 3146–3158 (1995).
  17. C. J. H. Brenan, I. W. Hunter, and M. J. Korenberg, “Volumetric Raman spectral imaging with a confocal Raman microscope: image modalities and applications,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, and T. Wilson, eds., Proc. SPIE 2655, 130–139 (1996).
  18. M. D. Schaeberle, H. R. Morris, J. F. Turner II, and P. J. Treado, “Raman chemical imaging spectroscopy,” Anal. Chem. News Features, 175A–181A (1 March 1999).
  19. T. L. Freeman, S. E. Cope, M. R. Stringer, J. E. Cruse-Sawyer, S. B. Brown, D. N. Batchelder, and K. Birbeck, “Investigation of the subcellular localization of zinc phthalocyanines by Raman mapping,” Appl. Spectrosc. 52, 1257–1263 (1998).
  20. C. A. Drumm and M. D. Morris, “Microscopic Raman line-imaging with principal component analysis,” Appl. Spectrosc. 49, 1331–1337 (1995).
  21. S. L. Zhang, J. A. Pezzuti, M. D. Morris, A. Appadwedula, C. M. Hsiung, M. A. Leugers, and D. Bank, “Hyperspectral Raman line imaging of syndiotactic polystyrene crystallinity,” Appl. Spectrosc. 52, 1264–1268 (1998).
  22. K. A. Christensen and M. D. Morris, “Hyperspectral Raman microscopic imaging using Powell lens line illumination,” Appl. Spectrosc. 52, 1145–1147 (1998).
  23. G. J. Puppels and J. Greve, “Whole cell studies and tissue characterization by Raman spectroscopy,” in Biomedical Applications of Spectroscopy, C. Hester, ed. (Wiley, Chichester, England, 1996), pp. 1–47.
  24. M. D. Schaeberle, V. F. Kalasinsky, J. L. Luke, E. N. Lewis, I. W. Levin, and P. J. Treado, “Raman chemical imaging: histopathology of inclusions in human breast tissue,” Anal. Chem. 68, 1829–1833 (1996).
  25. H. R. Morris, C. C. Hoyt, P. Miller, and P. J. Treado, “Liquid crystal tunable filter Raman chemical imaging,” Appl. Spectrosc. 50, 805–811 (1996).
  26. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
  27. N. J. Kline and P. J. Treado, “Raman chemical imaging of breast tissue,” J. Raman Spectrosc. 28, 119–124 (1997).
  28. C. Otto, C. J. de Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of micro-Raman imaging in biomedical research,” J. Raman Spectrosc. 28, 143–150 (1997).
  29. N. M. Sijtsema, S. D. Wouters, C. J. De Grauw, C. Otto, and J. Greve, “Confocal direct imaging Raman microscope: design and applications in biology,” Appl. Spectrosc. 52, 348–355 (1998).
  30. S. Y. Arzhantsev, A. Y. Chikishev, N. I. Koroteev, J. Greve, C. Otto, and N. M. Sijtsema, “Localization study of Co-phthalocyanines in cells by Raman micro(spectro)scopy,” J. Raman Spectrosc. 30, 205–208 (1999).
  31. H. Parekh and H. Simpkins, “The transport and binding of taxol,” General Pharm. 29, 167–172 (1997).
  32. B. Z. Leal, M. L. Meltz, N. Mohan, J. Kuhn, T. J. Prihoda, and T. S. Herman, “Interaction of hyperthermia with Taxol in human MCF-7 breast adenocarcinoma cells,” Int. J. Hyperthermia 15, 225–236 (1999).
  33. A. M. Yvon, P. Wadsworth, and M. A. Jordan, “Taxol suppresses dynamics of individual microtubules in living human tumor cells,” Mol. Biol. Cell 10, 947–959 (1999).
  34. K. Torres and S. B. Horwitz, “Mechanisms of Taxol-induced cell death are concentration dependent,” Cancer Res. 58, 3620–3626 (1998).
  35. D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13, 191–219 (1984).
  36. K. R. Castleman, Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  37. J. Ling and A. C. Bovik, “Smoothing low-SNR molecular images via anisotropic median-diffusion,” IEEE Trans. Med. Imaging 21, 377–384 (2002).
  38. M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, “Robust anisotropic diffusion,” IEEE Trans. Image Process. 7, 421–432 (1998).
  39. J. Ling, “Development of Raman imaging microscopy to visualize drug actions in living cells,” Ph.D. dissertation (The University of Texas at Austin, Austin, Tex., 2001), p. 150.
  40. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).
  41. Y. H. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–765 (1974).
  42. T. J. Holmes and Y. H. Liu, “Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy: further testing,” Appl. Opt. 28, 4930–4938 (1989).
  43. G. M. P. van Kempen and L. J. van Vliet, “Background estimation in nonlinear image restoration,” J. Opt. Soc. Am. A 17, 425–433 (2000).
  44. B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Microtubules,” in Essential Cell Biology: an Introduction to the Molecular Biology of the Cell (Garland, New York, 1998), pp. 518–529.
  45. E. E. Morrison, J. M. Askham, P. Clissold, A. F. Markham, and D. M. Meredith, “The cellular distribution of the adenomatous polyposis coli tumour suppressor protein in neuroblastoma cells is regulated by microtubule dynamics,” Neuroscience (N.Y.) 81, 553–563 (1997).
  46. J. J. Lemasters, G. J. Gores, A. L. Nieminen, T. L. Dawson, B. E. Wray, and B. Herman, “Multiparameter digitized video microscopy of toxic and hypoxic injury in single cells,” Environ. Health Perspect. 84, 83–94 (1990).
  47. W. Malorni, C. Fiorentini, S. Paradisi, M. Giuliano, P. Mastrantonio, and G. Donelli, “Surface blebbing and cytoskeletal changes induced in vitro by toxin B from Clostridium difficile: an immunochemical and ultrastructural study,” Exp. Molecular Pathology 52, 340–356 (1990).
  48. W. Malorni, F. Iosi, F. Mirabelli, and G. Bellomo, “Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells: alterations underlying surface bleb formation,” Chem. Biol. Interact. 80, 217–236 (1991).
  49. M. S. Jurkowitz-Alexander, R. A. Altschuld, C. M. Hohl, J. D. Johnson, J. S. McDonald, T. D. Simmons, and L. A. Horrocks, “Cell swelling, blebbing, and death are dependent on ATP depletion and independent of calcium during chemical hypoxia in a glial cell line (ROC-1),” J. Neurochem. 59, 344–352 (1992).
  50. G. Zahrebelski, A. L. Nieminen, K. al-Ghoul, T. Qian, B. Herman, and J. J. Lemasters, “Progression of subcellular changes during chemical hypoxia to cultured rat hepatocytes: a laser scanning confocal microscopic study,” Hepatology 21, 1361–1372 (1995).
  51. S. M. Laster and J. M. Mackenzie, Jr., “Bleb formation and F-actin distribution during mitosis and tumor necrosis factor-induced apoptosis,” Microsc. Res. Tech. 34, 272–280 (1996).
  52. P. T. Jain and B. F. Trump, “Human breast cancer cell growth inhibition and deregulation of [Ca2+]i by estradiol,” Anti-Cancer Drugs 8, 283–287 (1997).
  53. T. Jones, “Present and future capabilities of molecular imaging techniques to understand brain function,” J. Psychopharmacol. 13, 324–329 (1999).
  54. G. D. Sockalingum, A. Beljebbar, H. Morjani, J. F. Angiboust, and M. Manfait, “Characterization of island films as surface-enhanced Raman spectroscopy substrates for detecting low antitumor drug concentrations at single cell level,” Biospectrosc. 4, S71–S78 (1998).
  55. I. R. Nabiev, V. A. Savchenko, and E. S. Efremov, “Surface-enhanced Raman spectra of aromatic amino acids and proteins adsorbed by silver hydrosols,” J. Raman Spectrosc. 14, 375–379 (1983).
  56. I. R. Nabiev, K. V. Sokolov, and O. N. Voloshin, “Surface-enhanced Raman spectroscopy of biomolecules III: Determination of the local destabilization regions in the double helix,” J. Raman Spectrosc. 21, 333–336 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited