OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 28 — Oct. 1, 2002
  • pp: 6018–6029

Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation

Chad Roller, Khosrow Namjou, James D. Jeffers, Mark Camp, Adam Mock, Patrick J. McCann, and Joe Grego  »View Author Affiliations


Applied Optics, Vol. 41, Issue 28, pp. 6018-6029 (2002)
http://dx.doi.org/10.1364/AO.41.006018


View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We used a high-resolution mid-IR tunable-laser absorption spectroscopy (TLAS) system with a single IV–VI laser operating near 5.2 µm to measure the level of exhaled nitric oxide (eNO) in human breath. A method of internal calibration using simultaneous eNO and exhaled CO2 measurements eliminated the need for system calibration with gas standards. The results observed from internally calibrating the instrument for eNO measurements were compared with measurements of eNO calibrated to gas standards and were found to be similar. Various parameters of the TLAS system for eNO breath testing were examined and include gas cell pressure, exhalation time, and ambient NO concentrations. A reduction in eNO from elevated concentrations (∼44 parts in 109) to near-normal levels (<20 parts in 109) from an asthmatic patient was observed after the patient had received treatment with an inhaled glucocorticoid anti-inflammatory medication. Such measurements can help in evaluating airway inflammation and in monitoring the effectiveness of anti-inflammatory therapies.

© 2002 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: March 21, 2002
Revised Manuscript: June 20, 2002
Published: October 1, 2002

Citation
Chad Roller, Khosrow Namjou, James D. Jeffers, Mark Camp, Adam Mock, Patrick J. McCann, and Joe Grego, "Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation," Appl. Opt. 41, 6018-6029 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-28-6018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Yates, “Role of exhaled nitric oxide in asthma,” Immunol. Cell Biol. 79, 178–190 (2001). [CrossRef] [PubMed]
  2. K. Alving, E. Weitzberg, J. M. Lundberg, “Increased amount of nitric oxide in exhaled air of asthmatics,” Eur. Respir. J. 6, 1368–1370 (1993). [PubMed]
  3. S. A. Kharitonov, P. J. Barnes, “Clinical aspects of exhaled nitric oxide,” Eur. Respir. J. 16, 781–792 (2000). [CrossRef] [PubMed]
  4. K. J. Haley, J. M. Drazen, “Inflammation and airway function in asthma, what you see is not necessarily what you get,” Am. J. Respir. Crit. Care Med. 157, 1–3 (1998). [CrossRef] [PubMed]
  5. M. Bernareggi, G. Cremona, “Measurement of exhaled nitric oxide in humans and animals,” Pulmonary Pharmacol. Therapeut. 12, 331–352 (1999). [CrossRef]
  6. P. E. Silkoff, “Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children—1999,” Am. J. Respir. Crit. Care Med. 160, 2104–2117 (1999). [CrossRef]
  7. S. Kharitonov, K. Alving, P. J. Barnes, “Exhaled and nasal nitric oxide measurements: recommendations (ERS Task Force Report),” Eur. Respir. J. 10, 1683–1693 (1997). [CrossRef] [PubMed]
  8. P. E. Silkoff, P. A. McLean, A. S. Slutsky, H. G. Furlott, E. Hoffstein, S. Wkita, K. R. Chapman, J. P. Szalai, N. Zamel, “Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide,” Am. J. Respir. Crit. Care Med. 155, 260–267 (1997). [CrossRef] [PubMed]
  9. N. Binding, W. Muller, P. A. Czeschinski, “NO chemiluminescence in exhaled air: interference of compounds from endogenous and exogenous sources,” Eur. Respir. J. 6, 499–503 (2000). [CrossRef]
  10. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–222 (1998). [CrossRef]
  11. M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room-temperature,” Science 295, 301–305 (2002). [CrossRef] [PubMed]
  12. L. Konstantin, A. I. Nadezhdinskii, I. A. Adamouskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique,” Infrared Phys. Technol. 37, 181–192 (1996). [CrossRef]
  13. K. Namjou, P. J. McCann, W. T. Potter, “Breath testing with a Mid-IR laser spectrometer,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Processing Monitoring II, A. Fried, ed., Proc. SPIE3758, 74–80 (1999). [CrossRef]
  14. K. R. Lewelling, P. J. McCann, “Finite element modeling predicts possibility of thermoelectrically-cooled lead-salt diode lasers,” IEEE Photon. Technol. Lett. 9, 297–299 (1997). [CrossRef]
  15. H. Z. Wu, X. M. Fang, R. Salas, D. McAlister, P. J. McCann, “Transfer of PbSe/PbEuSe epilayers grown by MBE on BaF2-coated Si(111),” Thin Solid Films 352, 277–282 (1999). [CrossRef]
  16. D. W. McAlister, P. J. McCann, H. Z. Wu, X. M. Fang, “Fabrication of thin film cleaved cavities using a bonding and cleaving fixture,” IEEE Photon. Technol. Lett. 12, 22–24 (2000). [CrossRef]
  17. P. J. McCann, K. Namjou, X. M. Fang, “Above-room-temperature continuous wave mid-infrared photoluminescence from PbSe/PbSrSe quantum wells,” Appl. Phys. Lett. 75, 3608–3610 (1999). [CrossRef]
  18. X. M. Fang, K. Namjou, I. Chao, P. J. McCann, N. Dai, G. Tor, “Molecular beam epitaxy of PbSrSe and PbSe/PbSrSe multiple quantum well structures for use in mid-infrared light emitting devices,” J. Vacuum Sci. Technol. 18, 1720–1723 (2000). [CrossRef]
  19. D. W. McAlister, P. J. McCann, K. Namjou, H. Z. Wu, X. M. Fang, “Mid-IR photoluminescence from IV–VI layers grown on silicon,” J. Appl. Phys. 89, 3514–3516 (2001). [CrossRef]
  20. F. Zhao, H. Wu, L. Jayasinghe, Z. Shi, “Above-room-temperature optically pumped 4.12 um midinfrared vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 1129–1131 (2002). [CrossRef]
  21. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001). [CrossRef]
  22. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B. 72, 859–863 (2001). [CrossRef]
  23. C. Roller, K. Namjou, J. Jeffers, W. Potter, P. J. McCann, J. Grego, “Simultaneous measurement of NO and CO2 in human breath using a single IV–VI mid-infrared laser,” Opt. Lett. 27, 107–109 (2002). [CrossRef]
  24. E. V. Stepanov, P. V. Zyrianov, V. A. Miliaev, “Single-breath NO detection with tunable diode lasers for pulmonary disease diagnosis,” in ALT’98 Selected Papers on Novel Laser Methods in Medicine and Biology, G. P. Koz’min, A. M. Prokhorov, V. I. Pustovoy, eds., Proc. SPIE3829, 103–109 (1999). [CrossRef]
  25. J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques,” Appl. Opt. 21, 3961–3965 (1982). [CrossRef] [PubMed]
  26. E. D. Hinkley, C. Freed, “Direct observation of the Lorentzian line shape as limited by quantum phase noise in a laser above threshold,” Phys. Rev. Lett. 23, 277–279 (1969). [CrossRef]
  27. M. Razeghi, S. Slivken, A. Matlis, A. Rybaltowski, C. Jelen, J. Diaz, “Low threshold quantum cascade lasers grown by GSMBE,” LEOS Newsletter 12(6), 5–7 (1998).
  28. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000). [CrossRef]
  29. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  30. A. Fried, J. R. Drummond, B. Henry, J. Fox, “Versatile integrated tunable diode laser system for precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991). [CrossRef] [PubMed]
  31. J. J. Carr, J. M. Brown, “The human respiratory system and its measurement,” in Introduction to Biomedical Equipment Technology, 3rd ed., C. E. Stewart, ed. (Prentice-Hall, Upper Saddle River, N.J., 1998), Chap. 10.
  32. A. Mock, C. Roller, K. Namjou, J. Jeffers, P. J. McCann, J. Grego, “Real-time ground level atmospheric nitric oxide measurements using a calibrated TLDAS system,” in Laser Applications to Chemical and Environmental Analysis (LACEA), Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. SaC4-1–SaC4-3.
  33. R. A. Dweik, S. A. A. Comhair, B. Gaston, F. B. J. M. Thunnissen, C. Farver, M. J. Thomassen, M. Kavuru, J. Hammel, H. M. Abu-Soud, S. C. Erzurum, “NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response,” Proc. Natl. Acad. Sci. 98(5), 2622–2627 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited