OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 29 — Oct. 10, 2002
  • pp: 6050–6054

Digital refraction distortion correction with an astigmatic coherence sensor

Daniel L. Marks, Ronald A. Stack, and David J. Brady  »View Author Affiliations

Applied Optics, Vol. 41, Issue 29, pp. 6050-6054 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the sensing and correction of an isoplanatic refractive distortion (not lens aberrations), using the complete measurement of the partially coherent field in an aperture that the previously described astigmatic coherence sensor provides. Isoplanatic distortions, and in general distortions that do not cause energy loss, maintain the orthogonality of the coherent modes. We use the fact that a common distortion will occur to all coherent modes to separate the distortion from the source behind it, rather than requiring a reference source at a different wavelength. Digital deconvolution was performed on the full four-dimensional partially coherent field for simultaneously computing the distortion and the source intensity distribution.

© 2002 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(100.1830) Image processing : Deconvolution
(110.1650) Imaging systems : Coherence imaging

Original Manuscript: November 30, 2001
Revised Manuscript: June 4, 2002
Published: October 10, 2002

Daniel L. Marks, Ronald A. Stack, and David J. Brady, "Digital refraction distortion correction with an astigmatic coherence sensor," Appl. Opt. 41, 6050-6054 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Y. Kwon, “Real-time radial-shear interferometer,” in Adaptive Optics, J. E. Ludman, ed., Proc. SPIE551, 32–35 (1985). [CrossRef]
  2. R. N. Smartt, W. H. Steel, “Theory and application of point-diffraction interferometers (telescope testing),” Jpn. J. Appl. Phys. 14, 351–356 (1975).
  3. R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase-diversity wave-front sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994). [CrossRef] [PubMed]
  4. R. A. Gonsalves, “Nonisoplanatic imaging by phase diversity,” Opt. Lett. 19, 495–497 (1994). [CrossRef]
  5. E. Atad, J. W. Harris, C. M. Humphries, V. C. Salter, “Lateral shearing interferometry. Evaluation and control of the optical performance of astronomical telescopes,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 575–584 (1990). [CrossRef]
  6. L. E. Schmutz, “Hartmann sensing at Adaptive Optics Associates,” in Electromechanical System Interaction with Optical Design, S. Gowrinathan, ed., Proc. SPIE779, 13–17 (1987). [CrossRef]
  7. R. G. Lane, M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992). [CrossRef] [PubMed]
  8. R. C. Cannon, “Global wave-front reconstruction using Shack-Hartmann sensors,” J. Opt. Soc. Am. A 12, 2031–2039 (1995). [CrossRef]
  9. R. Benedict, J. B. Breckinridge, D. L. Fried, “Atmospheric compensation technology: Introduction,” J. Opt. Soc. Am. A 11, 257–262 (1994). [CrossRef]
  10. W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. O’Meara, J. A. Sanguinet, W. P. Brown, “Coherent optical adaptive techniques,” Appl. Opt. 13, 291–300 (1974). [CrossRef] [PubMed]
  11. C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11, 813–824 (1994). [CrossRef]
  12. K. Avicola, J. M. Brase, J. R. Morris, H. D. Bissinger, J. M. Duff, H. W. Friedman, D. T. Gavel, C. E. Max, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, K. E. Waltjen, “Sodium-layer laser-guide-star experimental results,” J. Opt. Soc. Am. A 11, 825–831 (1994). [CrossRef]
  13. P. M. Birch, J. Gourlay, G. D. Love, A. Purvis, “Real-time optical aberration correction with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 37, 2164–2169 (1998). [CrossRef]
  14. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997). [CrossRef] [PubMed]
  15. V. A. Berenberg, A. A. Leshchev, L. N. Soms, M. V. Vasilev, V. Y. Venediktov, A. P. Onokhov, L. A. Beresbev, “Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs,” Opt. Commun. 166, 181–188 (1999). [CrossRef]
  16. J. Primot, G. Rousset, J. C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7, 1598–1608 (1990). [CrossRef]
  17. D. L. Marks, R. A. Stack, D. J. Brady, “Astigmatic coherence sensor for digital imaging,” Opt. Lett. 25, 1726–1728 (2000). [CrossRef]
  18. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995). [CrossRef]
  19. E. Wolf, “New theory of partial coherence in the space-frequency domain. I. Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  20. G. H. Golub, C. F. Van Loan, Matrix Computations (Johns Hopkins University, Baltimore, Md., 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited