OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 29 — Oct. 10, 2002
  • pp: 6187–6192

Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram

Osamu Matoba, Thomas J. Naughton, Yann Frauel, Nicolas Bertaux, and Bahram Javidi  »View Author Affiliations

Applied Optics, Vol. 41, Issue 29, pp. 6187-6192 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A three-dimensional (3D) object reconstruction technique that uses only phase information of a phase-shifting digital hologram and a phase-only spatial-light modulator is proposed. It is well known that a digital hologram can store both amplitude and phase information of an optical electric field and can reconstruct the original 3D object in a computer. We demonstrate that it is possible to reconstruct optically 3D objects using only phase information of the optical field calculated from phase-shifting digital holograms. The use of phase-only information enables us to reduce the amount of data in the digital hologram and reconstruct optically the 3D objects using a liquid-crystal spatial light modulator without optical power loss. Numerical evaluation of the reconstructed 3D object is presented.

© 2002 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.3010) Image processing : Image reconstruction techniques
(100.6890) Image processing : Three-dimensional image processing
(200.4560) Optics in computing : Optical data processing

Original Manuscript: December 27, 2001
Revised Manuscript: June 7, 2002
Published: October 10, 2002

Osamu Matoba, Thomas J. Naughton, Yann Frauel, Nicolas Bertaux, and Bahram Javidi, "Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41, 6187-6192 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  2. H. J. Caulfield, Handbook of Optical Holography (Academic, New York, 1979).
  3. F. Okano, J. Arai, H. Hoshino, I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999). [CrossRef]
  4. A. D. McAulay, Optical Computer Architectures: The Application of Optical Concepts to the Next Generation of Computers (Wiley, New York, 1991).
  5. N. Yoshikawa, T. Yatagai, “Fringe pattern correlator for three-dimensional object recognition,” Opt. Lett. 25, 1424–1426 (2000). [CrossRef]
  6. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001). [CrossRef]
  7. U. Schnars, W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  8. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  9. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000). [CrossRef]
  10. M. Sutkowski, M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000). [CrossRef]
  11. E. Tajahuerce, O. Matoba, B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt. 40, 3877–3886 (2001). [CrossRef]
  12. Y. Frauel, E. Tajahuerce, M. A. Castro, B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887–3893 (2001). [CrossRef]
  13. J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970). [PubMed]
  14. T. H. Barnes, T. Eiju, K. Matuda, H. Ichikawa, M. R. Taghizadeh, J. Turunen, “Reconfigurable free-space optical interconnections with a phase-only liquid crystal spatial light modulator,” Appl. Opt. 31, 5527–5535 (1992). [CrossRef] [PubMed]
  15. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, B. Robertson, “Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A 18, 205–215 (2001). [CrossRef]
  16. L. G. Neto, D. Roberge, Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid-crystal television,” Appl. Opt. 34, 1944–1950 (1995). [CrossRef] [PubMed]
  17. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999). [CrossRef]
  18. N. Yoshikawa, T. Yatagai, “Phase optimization of a kinoform by simulated annealing,” Appl. Opt. 33, 863–868 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited