OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 3 — Jan. 20, 2002
  • pp: 412–423

Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?

Banghua Yan, Knut Stamnes, Wei Li, Bingquan Chen, Jakob J. Stamnes, and Si-Chee Tsay  »View Author Affiliations

Applied Optics, Vol. 41, Issue 3, pp. 412-423 (2002)

View Full Text Article

Acrobat PDF (304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current methods for the atmospheric correction of ocean-color imagery rely on the computation of optical properties of a mixture of chemically different aerosol particles through combination of the mixture with it into an effective, single-particle component that has an average refractive index. However, a multi-component approach in which each particle type independently grows and changes its refractive index with increasing humidity is more realistic. Computations based on Mie theory and radiative transfer are used to show that the two approaches result in top-of-the-atmosphere radiances that differ more than the water-leaving radiance. Thus, proper atmospheric correction requires a multicomponent approach for the computation of realistic aerosol optical properties.

© 2002 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.0290) Scattering : Scattering

Banghua Yan, Knut Stamnes, Wei Li, Bingquan Chen, Jakob J. Stamnes, and Si-Chee Tsay, "Pitfalls in atmospheric correction of ocean color imagery: how should aerosol optical properties be computed?," Appl. Opt. 41, 412-423 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. D. Mobley, “Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, California, 1994).
  2. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, 1994), 2nd ed.
  3. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
  4. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observation System era,” J. Geophys. Res. 102, 17081–17106 (1997).
  5. H. R. Gordon, T. Du, and T. Zhang, “Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption,” Appl. Opt. 36, 8670–8684 (1997).
  6. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensing ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
  7. M. Schwindling, P. Deschamps, and R. Frouin, “Verification of aerosol models for satellite ocean color remote sensing,” J. Geophys. Res. 103, 24919–24935 (1998).
  8. E. P. Shettle and R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties (Air Force Geophysics Laboratory, Hanscomb AFB, Mass., 1979).
  9. J. Heintzenberg, “Light scattering parameters of internal and external mixtures of soot and non-absorbing material in atmospheric aerosols,” in Proceedings of the Conference on Carbonaceous Particles in the Atmosphere, Berkeley, Calif., March 20–22, 1978, T. Novakov, ed. (National Science Foundation/Lawrence Berkeley Laboratory, Berkeley, Calif., 1978).
  10. P. Chylek and J. Wong, “Effect of absorbing aerosol on global radiation budget,” Geophys. Res. Lett. 22, 929–931 (1995).
  11. G. Hanel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” in Advances in Geophysics, H. E. Landsberg and J. Van Mieghem, eds. (Academic, New York) 19, 73–188 (1976).
  12. V. Wulfmeyer and G. Feingold, “On the relationship between relative humidity and particle backscattering coefficient in the marine boundary layer determined with differential absorption lidar,” J. Geophys. Res. 105, 4729–4741 (2000).
  13. R. S. Fraser, S. Mattoo, E.-N. Yeh, and C. R. McClain, “Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment,” J. Geophys. Res. 102, 17107–17118 (1997).
  14. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887–896 (2000).
  15. S.-C. Tsay and G. L. Stephens, A Physical/Optical Model for Atmospheric Aerosols with Application to Visibility Problems (Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colo., 1990).
  16. G. A. d’Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (A. Deepak Publishing, Hampton, Va., 1991).
  17. D. M. Murphy, J. R. Anderson, P. K. Quinn, L. M. Mcinnes, F. J. Brechtel, S. M. Kreidenweis, A. M. Middlebrook, M. Posfai, D. S. Thomson, and P. R. Buseck, “Influence of sea-salt on aerosol radiative properties in the southern ocean marine boundary layer,” Nature 392, 62–65 (1998).
  18. B. Chen, K. Stamnes, B. Yan, Ø. Frette, and J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on atmospheric correction of ocean color imagery,” J. Adv. Mar. Sci. Tech. Soci. 4, 329–338 (1998).
  19. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
  20. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
  21. Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt. 33, 431–442 (1994).
  22. G. E. Thomas and K. Stamnes, “Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, New York, 1999).
  23. R. W. Fenn, “Aerosol-Verteilungen und atmospharisches Streulicht,” Beitr. Physik Atmos. 37, 69–104 (1964).
  24. K. T. Whitby, R. B. Husar, and B. Y. H. Liu, “The aerosol size distribution of Los Angles smog,” J. Colloid Sci. 39, 177–204 (1972).
  25. K. T. Whitby, W. E. Clark, V. A. Marple, G. M. Sverdrup, G. J. Sem, K. Willeke, B. Y. H. Liu, and D. Y. H. Pui, “Characterization of California aerosols: I. Size distributions of Freeway aerosol,” Atmos. Environ. 9, 463–482 (1975).
  26. K. Willeke, K. T. Whitby, W. E. Clark, and V. A. Marple, “Size distributions of Denver aerosols: A comparison of two sites,” Atmos. Environ. 8, 609–633 (1974).
  27. J. T. Twitty, R. J. Parent, J. A. Weinman, and E. W. Eloranta, “Aerosol size distributions: Remote determination from airborne measurements of the solar aureole,” Appl. Opt. 15, 980–989 (1976).
  28. F. S. Harris, Jr. and M. P. McCormick, “Mie scattering by three polydispersions,” J. Colloid Sci. 39, 536–545 (1972).
  29. C. N. Davies, “Size distribution of atmospheric particles,” J. Aerosol Sci. 5, 293–300 (1974).
  30. K. T. Whitby and B. Cantrell, “Atmospheric aerosols—characteristics and measurements,” in The International Conference on Environmental Sensing and Assessment, Las Vegas, Nevada, September 14–19, 1975 (Institute of Electrical and Electronics Engineers, New York, 1975), paper 29–1.
  31. G. Hanel and M. Lehmann, “Equilibrium size of aerosol particles and relative humidity: new experimental data from various aerosol types and their treatment for cloud physics application,” Contr. Atmos. Phys. 54, 57–71 (1981).
  32. P. V. N. Nair and K. G. Vohra, “Growth of aqueous sulfuric acid droplets as function of relative humidity,” J. Aerosol Sci. 6, 265–271 (1975).
  33. E. E. Gard, M. J. Kleeman, D. S. Gross, L. S. Hughes, J. O. Allen, B. D. Morrical, D. P. Fergenson, T. Dienes, M. E. Galli, R. J. Johnson, G. R. Cass, and K. A. Prather, “Direct observation of heterogeneous chemistry in the atmosphere,” Science 279, 1184–1187 (1998).
  34. E. Swietlicki, J. Zhou, D. S. Covert, K. Hameri, B. Busch, M. Vakeva, U. Dusek, O. H. Berg, A. Wiedensohler, P. Aalto, J. Makela, B. G. Martinsson, G. Papaspiropoulos, B. Mentes, G. Frank, and F. Stratmann, “Hygroscopic properties of aerosol particles in the north-eastern Atlantic during ACE-2,” Tellus B 52, 201–227 (2000).
  35. Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989).
  36. K. D. Perry, T. A. Cahill, R. A. Eldred, D. D. Dutcher, and T. E. Gill, “Long-range transport of North African dust to the eastern United States,” J. Geophys. Res. 102, 11225–11238 (1997).
  37. M. Uematsu, R. A. Duce, J. M. Prospero, L. Chen, J. T. Merrill, and R. L. McDonald, “Transport of mineral aerosol from Asia over the north Pacific ocean,” J. Geophys. Res. 88, 5343–5352 (1983).
  38. A. D. Clarke, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration, and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
  39. M. Ikemagi, K. Okada, Y. Zaizen, and Y. Makino, “Aerosol particles in the middle troposphere over the northwestern Pacific,” J. Met. Soc. Jap. 71, 517–527 (1993).
  40. Y. J. Kaufman, D. Tanre, L. Remer, E. Vermote, A. Chu, and B. N. Holben, “Remote sensing of tropospheric aerosol from EOS-MODIS over the land using dark targets and dynamic aerosol models,” J. Geophys. Res. 102, 17051–17067 (1997).
  41. G. K. Yue, J. Lu, V. A. Mohnen, P.-H. Wang, V. K. Saxena, and J. Anderson, “Retrieving aerosol optical properties from moments of the particle size distribution,” Geophys. Res. Lett. 24, 651–654 (1997).
  42. I. Chiapello, G. Bergametti, B. Chatenet, F. Dulac, I. Jankowiak, C. Liousse, and E. S. Soares, “Contribution of the different aerosol species to the aerosol mass load and optical depth over the northeastern tropical Atlantic,” J. Geophys. Res. 104, 4025–4035 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited