OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 3 — Jan. 20, 2002
  • pp: 459–463

Neodymium:YLF Lasers at 1053 nm Passively Mode Locked with a Saturable Bragg Reflector

Ulrich Roth and Jürg E. Balmer  »View Author Affiliations


Applied Optics, Vol. 41, Issue 3, pp. 459-463 (2002)
http://dx.doi.org/10.1364/AO.41.000459


View Full Text Article

Acrobat PDF (257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the results obtained from three different setups of stable, diode-laser-pumped Nd:YLF lasers that operate in the TEM<sub>00</sub> mode at 1053 nm and are passively mode locked by a saturable Bragg reflector. We obtained pulse widths tailored between ~70 ps and ~4 ns by using intracavity etalons of various thicknesses. With a maximum output power of 680 mW, we achieved an optical efficiency of 23%.

© 2002 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

Citation
Ulrich Roth and Jürg E. Balmer, "Neodymium:YLF Lasers at 1053 nm Passively Mode Locked with a Saturable Bragg Reflector," Appl. Opt. 41, 459-463 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-3-459


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
  2. W. Koechner, Solid-State Laser Engineering, 4th ed., Springer Series in Optical Sciences (Springer-Verlag, New York, 1996).
  3. U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
  4. D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, and M. D. Dawson, “High-average-power (>20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17, 919–926 (2000).
  5. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE Sel. Top. Quantum Electron. 2, 454–464 (1996).
  6. H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. QE-12, 169–176 (1976).
  7. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
  8. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
  9. C. J. Flood, D. R. Walker, and H. M. van Driel, “Effect of spatial hole burning in a mode-locked diode end-pumped Nd:YAG laser,” Opt. Lett. 20, 58–60 (1995).
  10. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited