OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 3 — Jan. 20, 2002
  • pp: 483–492

Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power

Efim Khazanov, Nicolay Andreev, Oleg Palashov, Anatoly Poteomkin, Alexander Sergeev, Oliver Mehl, and David H. Reitze  »View Author Affiliations


Applied Optics, Vol. 41, Issue 3, pp. 483-492 (2002)
http://dx.doi.org/10.1364/AO.41.000483


View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive and systematic investigation of the fundamental physical limitations of Faraday isolation performance at high average powers that are due to thermally induced birefringence. First, the operation of various Faraday isolator designs by use of arbitrary orientation of cubic magneto-optic crystals is studied theoretically. It is shown that, for different Faraday isolator designs, different crystal orientations can optimize the isolation ratio. Second, thermo-optic and photoelastic constants for terbium gallium garnet crystals grown by different manufacturers were measured. Measurements of self-induced depolarization are made for various orientations of crystallographic axes. The measurements are in good agreement with our theoretical predictions. Based on our results, it is possible to select a crystal orientation that optimizes isolation performance at high average powers, resulting in a 5-dB enhancement over nonoptimized orientations.

© 2002 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(230.3810) Optical devices : Magneto-optic systems
(260.1440) Physical optics : Birefringence

History
Original Manuscript: April 5, 2001
Revised Manuscript: July 31, 2001
Published: January 20, 2002

Citation
Efim Khazanov, Nicolay Andreev, Oleg Palashov, Anatoly Poteomkin, Alexander Sergeev, Oliver Mehl, and David H. Reitze, "Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power," Appl. Opt. 41, 483-492 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-3-483


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Andreev, O. Palashov, E. Khazanov, G. Pasmanik, “Four-channel pulse-periodic Nd:YAG laser with diffraction-limited output radiation,” Quantum Electron. 27, 565–569 (1997) [Kvant. Elektron. (Moscow) 24, 581–585 (1997)].
  2. N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999). [CrossRef]
  3. H. J. Eichler, O. Mehl, J. Eichler, “Multi-amplifier arrangements with phase conjugation for power scaling of solid state lasers with high beam quality,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 166–176 (1999). [CrossRef]
  4. K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000). [CrossRef]
  5. Y. Hirano, S. Yamamoto, T. Tajime, H. Taniguchi, M. Nakamura, “High average power, room temperature operation of PPMgLN OPO,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 39 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), postdeadline papers, pp. 13–14.
  6. T. Kanabe, T. Kawashima, H. Matsui, Y. Okada, Y. Kawada, T. Eguchi, R. Kandasamy, Y. Kato, M. Terada, M. Yamanaka, M. Nakatsuka, Y. Izawa, S. Nakai, T. Kanzaki, H. Miyajima, M. Miyamoto, H. Kan, “Laser-diode-pumped 10-J × 10-Hz Nd:glass slab laser system,” in Advanced High-Power Lasers, M. Osinsk, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 190–197 (2000). [CrossRef]
  7. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser-Interferometer-Gravitational-Wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  8. E. Gustafson, D. Shoemaker, K. Strain, R. Wiess, “The LIGO II Conceptual Project Book,” in http://www.ligo.caltech.edu/docs/M/M990288-A1.pdf (2000).
  9. C. C. Robinson, “The Faraday rotation of diamagnetic glasses from 0.334 µm to 1.9 µm,” Appl. Opt. 3, 1163–1166 (1964). [CrossRef]
  10. T. V. Zarubina, G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opt. Zh. (J. Opt. Technology) 59, 48–52 (1992).
  11. T. V. Zarubina, A. N. Mal’shakov, G. A. Pasmanik, A. K. Poteomkin, “Comparative characteristics of magnetooptical glasses,” Opt. Zh. (J. Opt. Technol.) 64, 67–71 (1997).
  12. V. S. Averbakh, A. A. Betin, V. A. Gaponov, “Effects of stimulated self-action and scattering in gases and their influence on propagation of optical radiation (review),” Izv. Vyssh. Ucheben. Zaved. Radiofiz. (Sov. Radiophys.) 21, 1077–1106 (1978).
  13. E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. [Kvant. Elektron. (Moscow)] 30, 147–151 (2000). [CrossRef]
  14. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 250–251.
  15. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999). [CrossRef]
  16. E. A. Khazanov, “Suppression of self-induced depolarization of laser radiation in Faraday isolators,” in Optical Pulse and Beam Propagation, Y. B. Band, ed., Proc. SPIE3609, 181–192 (1999). [CrossRef]
  17. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Elektron. (Moscow) 26, 59–64, (1999).
  18. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000). [CrossRef]
  19. J. F. Nye, Physical Properties of Crystals (Oxford University, London, 1964).
  20. N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. [Kvant. Elektron. (Moscow)] 30, 1107–1108 (2000). [CrossRef]
  21. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, “Measurements of thermooptic characteristics of magnetoactive glasses,” in Conference on Lasers and Electro-Optics (CLEO/US), in OSA 1999 Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 499–500.
  22. N. Andreev, A. Babin, A. Kiselev, O. Palashov, E. Khazanov, O. Shaveleov, T. Zarubina, “Thermooptical constant of magneto-active glasses,” J. Opt. Technol. 67, 556–558 (2000). [CrossRef]
  23. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” Appl. Phys. 38, 5149–5153 (1967).
  24. W. Koechner, D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970). [CrossRef]
  25. L. N. Soms, A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979) [Kvant. Electron. (Moscow) 6, 2546–2551, (1979)].
  26. L. N. Soms, A. A. Tarasov, V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980) [Kvant. Elektron. (Moscow) 7, 619–621, (1980)].
  27. W. Koechner, D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971). [CrossRef]
  28. F. W. Quelle, “Themal distortion of diffraction-limited optical elements,” Appl. Opt. 5, 633–637 (1966). [CrossRef] [PubMed]
  29. B. A. Boley, J. H. Weiner, Theory of Thermal Stresses (Dover, New York, 1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited