OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 3 — Jan. 20, 2002
  • pp: 493–502

Variational Method for the Retrieval of the Optical Thickness and the Backscatter Coefficient from Multiangle Lidar Profiles

Michaël Sicard, Patrick Chazette, Jacques Pelon, Jae Gwang Won, and Soon-Chang Yoon  »View Author Affiliations


Applied Optics, Vol. 41, Issue 3, pp. 493-502 (2002)
http://dx.doi.org/10.1364/AO.41.000493


View Full Text Article

Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A variational method for retrieving the aerosol optical thickness and backscatter coefficient profiles from multiangle lidar measurements is presented and discussed. A monostatic single-wavelength low-energy lidar system was operated at different zenith angles during the Indian Ocean Experiment (INDOEX) campaign in 1999 to characterize the aerosol plumes in the Indian monsoon. The variational method was applied to lidar data to retrieve profiles of optical thickness and the backscatter coefficient for nighttime and daytime measurements. Results are obtained with an uncertainty of 10% below 3 km (nighttime) and 2.8 km (daytime) and a bias of less than 0.01. During daytime the retrieval of optical parameters is indeed limited to a lower altitude owing to the sky background signal and the atmospheric inhomogeneity. In both cases the total aerosol optical thickness is consistent (∓10%) with the integrated value derived from sunphotometer measurements. Backscatter-to-extinction ratios estimated in different regions by two distinct methods compared well, which proves the capability of the method to assess optical measurements and account for the altitude dependence of the phase function.

© 2002 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar

Citation
Michaël Sicard, Patrick Chazette, Jacques Pelon, Jae Gwang Won, and Soon-Chang Yoon, "Variational Method for the Retrieval of the Optical Thickness and the Backscatter Coefficient from Multiangle Lidar Profiles," Appl. Opt. 41, 493-502 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-3-493


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Hitschfeld and J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Appl. Meteorol. 11, 58–67 (1954).
  2. R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meteorol. Soc. 92, 220–230 (1966).
  3. W. Viezee, E. E. Uthe, and R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploratory study,” J. Appl. Meteorol. 8, 274–283 (1969).
  4. P. A. Davis, “Analysis of lidar signatures of cirrus clouds,” Appl. Opt. 8, 2099–2102 (1969).
  5. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
  6. R. H. Kohl, “Discussion of the interpretation problem encountered in single-wavelength lidar transmissionmeters,” J. Appl. Meteorol. 17, 1034–1038 (1978).
  7. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
  8. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosols: a numerical study,” J. Atmos. Ocean. Technol. 15, 1043–1050 (1998).
  9. S. T. Shipley, D. H. Tracey, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
  10. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
  11. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
  12. G. J. Kunz, “Bipath method as a way to measure the spatial backscatter and extinction coefficients with lidar,” Appl. Opt. 26, 794–795 (1987).
  13. H. G. Hughes and M. R. Paulson, “Double-ended lidar technique for aerosol studies,” Appl. Opt. 27, 2273–2278 (1988).
  14. D. Gutkowicz-Krusin, “Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering,” Appl. Opt. 32, 3266–3272 (1993).
  15. M. C. W. Sandford, “Laser scatter measurements in the mesosphere and above,” J. Atmos. Terr. Phys. 29, 1657–1662 (1967).
  16. P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
  17. J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
  18. P. B. Russell and J. M. Livingston, “Slant-lidar aerosol extinction measurements and their relation to measured and calculated albedo changes,” J. Clim. Appl. Meteorol. 23, 1204–1221 (1984).
  19. H. Shimizu, Y. Sasano, H. Nakane, N. Sugimoto, I. Matsui, and N. Takeuchi, “Large scale laser radar for measuring aerosol distribution over a wide area,” Appl. Opt. 24, 617–626 (1985).
  20. J. Rothermel and W. Jones, “Ground-based measurements of atmospheric backscatter and absorption using coherent CO2 lidar,” Appl. Opt. 24, 3487–3496 (1985).
  21. M. R. Paulson, “Atmospheric horizontal-inhomogeneity effects on the optical depths determined by the double-evaluation-angle lidar technique,” Rep. TD 1600, DTIC AS-A212 836 (Naval Ocean Systems Center, San Diego, Calif., 1989).
  22. S. Elouragini, “Useful algorithms to derive the optical properties of clouds from a backscatter lidar return,” J. Mod. Opt. 42, 1439–1446 (1995).
  23. S. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
  24. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, Toronto, 1984).
  25. M. Nicolet, “On the molecular scattering in the terrestrial atmosphere,” Planet. Space Sci. 32, 1467 (1984).
  26. V. Ramanathan, P. J. Crutzen, J. Coakley, R. Dickerson, A. Heymsfield, J. Kiehl, D. Kley, T. N. Krishnamurti, J. Kuettner, J. Lelieved, A. P. Mitra, J. Prospero, R. Sadourny, F. P. J. Valero, and E. L. Woodbridge, Indian Ocean Experiment (INDOEX) White Paper, Center for Clouds, Chemistry and Climate (C4) Publ. 143 (Scripps Institution of Oceanography, UCSD, La Jolla, Calif. 92093–0239, 1995).
  27. V. Ramanathan, P. J. Crutzen, J. A. Coakley, A. Clarke, W. D. Collins, R. Dickerson, D. Fahey, B. Gandrud, A. Heymsfield, J. T. Kiehl, J. Kuettner, T. Krishnamurti, D. Lubin, H. Maring, J. Ogren, J. Prospero, P. J. Rasch, D. Savoie, G. Shaw, A. Tuck, F. P. J. Valero, E. L. Woodbridge, and G. Zhang, Indian Ocean Experiment (INDOEX), A multiagency proposal for a field experiment in the Indian Ocean, Center for Clouds, Chemistry and Climate (C4) Publ. 162 (Scripps Institution of Oceanography, UCSD, La Jolla, Calif. 92093–0239, 1996).
  28. A. Jayaraman, D. Lubin, S. Ramachandran, V. Ramanathan, E. Woodbridge, W. D. Collins and K. S. Zalpuri, “Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January–February 1996 pre-INDOEX cruise,” J. Geophys. Res. 103, 13824–13836 (1999).
  29. S. K. Satheesh, K. Krishna Moorthy, and B. V. Murthy, “Spatial gradients in the aerosol characteristics over the Arabian Sea and Indian Ocean,” J. Geophys. Res. 103, 26183–26192 (1998).
  30. J.-F. Léon, P. Chazette, F. Dulac, J. Pelon, C. Flamant, M. Bonnazola, G. Foret, S. Cautenet, S. C. Alfaro, A. Gaudichet, L. Gomes, F. Lavenu, S. R. Inamdar, and P. R. Sarode, “Large scale advection of continental aerosols during INDOEX,” J. Geophys. Res. 108, 28427–28440 (2001).
  31. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans Geosci. Remote Sens. 31, 48–55 (1993).
  32. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov,”AERONET- A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
  33. J. D. Spinhirne, J. A. R. Rall, and V. S. Scott, “Compact eye safe lidar systems,” Rev. Laser Eng. 23, 112–118 (1995).
  34. E. Hamonou, P. Chazette, D. Bialis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, and A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited