OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 30 — Oct. 20, 2002
  • pp: 6243–6259

Evaluation of a Reflectance Model Used in the SeaWiFS Ocean Color Algorithm: Implications for Chlorophyll Concentration Retrievals

Banghua Yan, Knut Stamnes, Mitsuhiro Toratani, Wei Li, and Jakob J. Stamnes  »View Author Affiliations


Applied Optics, Vol. 41, Issue 30, pp. 6243-6259 (2002)
http://dx.doi.org/10.1364/AO.41.006243


View Full Text Article

Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the atmospheric correction of ocean-color imagery obtained over Case I waters with the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) instrument the method currently used to relax the black-pixel assumption in the near infrared (NIR) relies on (1) an approximate model for the nadir NIR remote-sensing reflectance and (2) an assumption that the water-leaving radiance is isotropic over the upward hemisphere. Radiance simulations based on a comprehensive radiative-transfer model for the coupled atmosphere-ocean system and measurements of the nadir remote-sensing reflectance at 670 nm compiled in the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) database are used to assess the validity of this method. The results show that (1) it is important to improve the flexibility of the reflectance model to provide more realistic predictions of the nadir NIR water-leaving reflectance for different ocean regions and (2) the isotropic assumption should be avoided in the retrieval of ocean color, if the chlorophyll concentration is larger than approximately 6, 10, and 40 mg m−3 when the aerosol optical depth is approximately 0.05, 0.1, and 0.3, respectively. Finally, we extend our scope to Case II ocean waters to gain insight and enhance our understanding of the NIR aspects of ocean color. The results show that the isotropic assumption is invalid in a wider range than in Case I waters owing to the enhanced water-leaving reflectance resulting from oceanic sediments in the NIR wavelengths.

© 2002 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering

Citation
Banghua Yan, Knut Stamnes, Mitsuhiro Toratani, Wei Li, and Jakob J. Stamnes, "Evaluation of a Reflectance Model Used in the SeaWiFS Ocean Color Algorithm: Implications for Chlorophyll Concentration Retrievals," Appl. Opt. 41, 6243-6259 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-30-6243


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452(1994).
  2. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observation System era,” J. Geophys. Res. 102, 17081–17106 (1997).
  3. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University, Cambridge, UK, 1994).
  4. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean-color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
  5. J.Muller, C.McClain, R.Caddrey, and G.Feldman, “The NASA SIMBIOS Program,” Backscatter, 29–32 (1998).
  6. R. A. Arnone, P. Martinolich, R. W. Gould, M. Sydor, and R. P. Stumpf, “Coastal optical properties using SeaWiFS,” presented at Ocean Optics XIV, Kailua-Kona, Hawaii, 10–13 November, 1998.
  7. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
  8. H. R. Gordon, “Ocean color remote sensing: influence of the particle phase function and the solar zenith angle,” Eos Trans. Am. Geophys. Union 14, 1055 (1986).
  9. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988b).
  10. A. Morel, “Chlorophyll-specific scattering coefficient of phytoplankton—a simplified theoretical approach,” Deep-Sea Res. Part A 34, 1093–1105 (1987).
  11. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
  12. S. A. Garver and D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: I. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997).
  13. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
  14. R. A. Reynolds, D. Stramski, and B. G. Mitchell, “A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean,” J. Geophys. Res. 106, 7125–7138 (2001).
  15. N. G. Jerlov and M. Fukuda, “Radiance distribution in the upper layers of the sea,” Tellus 12, 348–355 (1960).
  16. T. Sasaki, S. Watanabe, G. Oshiba, N. Okami, and M. Kajihara, “On the instrument for measuring angular distribution of underwater radiance,” Bull. Jpn. Soc. Sci. Fish. 28, 489–496 (1962).
  17. J. E. Tyler, “Radiance distribution as a function of depth in a underwater environment,” Bull. Scripps Inst. Oceanogr. 7, 363–412 (1960).
  18. H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997).
  19. J. R. V. Zaneveld, “Remotely sensed reflectance and its dependence on the vertical structure: a theoretical derivation,” Appl. Opt. 21, 4146–4150 (1982).
  20. J. R. V. Zaneveld, “A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties,” J. Geophys. Res. 100, 13135–13142 (1995).
  21. A. Morel, K. J. Voss, and B. Gentili, “Bidirectional reflectance of oceanic waters: a comparison of modeled and measured upward radiance fields,” J. Geophys. Res. 100, 13143–13150 (1995).
  22. B. Chen, K. Stamnes, B. Yan, Ø. Frette, and J. J. Stamnes, “Water-leaving radiance in the NIR spectral region and its effects on atmospheric correction of ocean-color imagery,” J. Adv. Mar. Sci. Tech. Soc. 4, 329–338 (1998).
  23. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  24. B. Yan, K. Stamnes, W. Li, B. Chen, J. J. Stamnes, and S. C. Tsay, “Pitfalls in atmospheric correction of ocean color imagery: How should aerosol optical properties be computed?,” Appl. Opt. 41, 412–423 (2002).
  25. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean-color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. Oceans 103, 24937–24953 (1998).
  26. Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt. 33, 431–442 (1994).
  27. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, New York, 1999).
  28. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) water: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
  29. R. C. Smith and K. S. Baker, “The analysis of ocean optical data II,” in Ocean Optics VII, M. A. Blizard, ed., Proc. SPIE 637, 95–107 (1986).
  30. J. L. Muller, “Comparison of irradiance immersion coefficients for several marine environmental radiometers (MERs) in Case Studies for SeaWiFS Calibration and Validation, Part 3, NASA Tech. Memo. 104566 27, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1995).
  31. R. W. Austin and G. Halikas, The Index of Refraction of Seawater (Scripps Institute of Oceanography, La Jolla, Calif., 1976).
  32. H. M. Dierssen and R. C. Smith, “Bio-optical properties and remote-sensing ocean-color algorithms for Antarctic Peninsula waters,” J. Geophys. Res. 105, 26,301–26,312 (2000).
  33. G. M. Hale and M. R. Query, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1974).
  34. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
  35. H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
  36. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93, 10749–10768 (1988).
  37. A. Morel, “Optical properties of pure water and sea water I,” in Optical Aspects of Oceanography, N. G. Jerlov and E. Steemann-Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  38. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
  39. K. Stamnes and R. Swanson, “A new look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres,” J. Atmos. Sci. 38, 387–399 (1981).
  40. K. Stamnes and H. Dale, “A new look at the discrete ordinate method for radiative-transfer calculations in anisotropically scattering atmospheres. II: Intensity computations,” J. Atmos. Sci. 38, 2696–2706 (1981).
  41. K. Stamnes, “On the computation of angular distributions of radiation in planetary atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 28, 47–51 (1982).
  42. K. Stamnes, “Reflection and transmission by a vertically inhomogeneous planetary atmosphere,” Planet. Space Sci. 30, 727–732 (1982).
  43. K. Stamnes and P. Conklin, “A new multilayer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 31, 273–282 (1982).
  44. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
  45. B. Yan and K. Stamnes, “Fast yet accurate computation of the complete radiance distribution in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  46. C. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
  47. B. Yan, “Radiative transfer modeling in the coupled atmosphere-ocean system and its application to the remote sensing of ocean-color imagery,” Ph.D. dissertation (University of Alaska, Fairbanks, Alaska, 2001).
  48. K. I. Gjerstad, “Monte Carlo simulations of radiative transport in the atmosphere and ocean,” M. Sc. thesis (University of Bergen, N-5007 Bergen, Norway, 2002).
  49. K. I. Gjerstad, J. J. Stamnes, B. Hamre, B. Yan, and K. Stamnes, “Monte Carlo simulations of radiative transfer in the coupled atmosphere-ocean system,” submitted to Appl. Opt. (2002).
  50. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
  51. T. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72–78 (Scripps Institute of Oceanography, La Jolla, Calif., 1972).
  52. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
  53. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
  54. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensing ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sensing 20, 1875–1916 (1999).
  55. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties” (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1979).
  56. B. Yan, B. Chen, and K. Stamnes, “The role of oceanic air bubbles in atmospheric correction of ocean-color imagery,” Appl. Opt. 41, 2202–2212 (2002).
  57. Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, and V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99, 20983–20988 (1994).
  58. M. Wang, S. W. Bailey, C. M. Pietras, and C. R. McClain, “SeaWiFS provides unique global aerosol optical property data,” Eos Trans. Am. Geophys. Union 81, 197–202 (2000).
  59. S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
  60. L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific absorption of plankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
  61. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
  62. U. Kronfeld, “Die optischen Eigenschaften der ozeanischen Schwebstoffe und ihre Bedeutung die Fernerkundung von Phytoplankton,” Ph.D. dissertation, GKSS Report 88/E/40 (GKSS Forschungzentrum, 21502 Geesthacht, Germany, 1988).
  63. D. Roland and H. Schiller, “Algorithm theoretical basis document (ATBD) 2.12: pigment index, sediment and gelbstoff retrieval from directional water leaving radiance reflectances using an inverse modeling technique,” PO-TN-MEL-GS-0005 (GKSS Research Center, 21502 Geesthacht, Germany, 1997).
  64. B. Hamre, O. Frette, S. R. Erga, J. J. Stamnes, and K. Stamnes, “Parameterization and analysis of the optical absorption and scattering coefficients in a Western Norwegian fjord—a case II water study,” Appl. Opt., submitted for publication.
  65. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited